
THE

AMSTRAD NOTEPAD! ^

ADVANCED ■ s=7

USER GUIDE ■

THE AMSTRAD

NOTEPAD

ADVANCED USER GUIDE

ROBIN NIXON

Programs written and documented by

Chris Nixon

SIGMA PRESS - Wilmslow, United Kingdom

Thi s One

5ZSR-LLP-2C3T

Copyright ©, R. Nixon and C. Nixon, 1993

All Rights Reserved. No part of this publication may be reproduced, stored in a

retrieval system, or transmitted in any form or by any means, electronic, mechanical,

photocopying, recording or otherwise, without prior written permission.

First published in 1993 by

Sigma Press, 1 South Oak Lane, Wilmslow, Cheshire SK9 6AR, England.

British Library Cataloguing in Publication Data

A CIP catalogue record for this book is available from the British Library.

ISBN: 1-85058-515-6

Typesetting and design by

Sigma Press, Wilmslow

Printed in Malta by

Interprint Ltd.

Distributed by

John Wiley & Sons Ltd., Baffins Lane, Chichester, West Sussex, England.

Acknowledgement of copyright names

Within this book, various proprietary trade names and names protected by copyright

are mentioned for descriptive purposes. Full acknowledgment is hereby made of all

such protection.

PREFACE

At first sight it might seem a step backwards and a rather surprising move for

Amstrad to release a 64K Z80-based 'laptop'-type computer when the market

definitely looks like PC-compatible is the way to go, and laptops being the fastest

growth area.

But maybe that's the point. There is a large group of people who know that all they

need is a cheap, easy-to-use and (as the Notepads proudly proclaim) user-friendly

interface - without having to learn about using DOS or Windows.

Amstrad are renowned for using tried and tested formulae, which the Z80 certainly is

- just look at how well they did with the PCW family. What's more, Z80s are cheap,

as are the additional chip sets that go with them and, because of their low power

consumption, you get up to 40 hours use out of an NC100 - about 10 times more than

with most PC-compatible laptops.

And Amstrad made a very sensible decision in their choice of software. By porting

Protext across to it they have a top-selling word-processor also available on a number

of platforms, including the Amstrad CPC and PCW, Archimedes, Atari ST, Amiga

and PC compatibles. In one go, Amstrad have a product that can be file compatible

with just about every other popular computer.

By removing Protext's command mode (well, not entirely, as you'll see later), they

came up with a very simple system of colour-coded key combinations so that, no

matter where you are in the Notepad, you can move to any other in-built application

at a key press. But, in my opinion, one of the best things to be incorporated was the

BBC Basic ROM which allows you to adapt the computer fully to your own

requirements.

And that is what this book concentrates on. In it you will discover how you can use

BBC Basic to write applications to complement seamlessly the in-built applications,

with the user never even knowing they are in Basic.

Even if you're not a programmer, the explanations of how the Notepad works should

interest you, but if not a large proportion of this book is taken up with ready-made

iv The Amstrad Notepad

programs ready for you to type in and run. So, without needing to know a thing about

programming, you can add a writing style checker to your Notepad, or there's a full

scientific calculator, a food additive database, a graphical world time zone viewer, a

mortgage calculator and a whole lot more.

For the more technically minded, full details on the Notepad's firmware calls,

input/output ports and system variables are provided, including how you can make

use of them yourself. You'll even learn how to create enure system applications to

run from a RAM card. Everything you need to know in order to do this is in this

book, even down to a fully working Z80 disassembler you can type in and use

immediately.

In fact this book is packed with undocumented information about the Notepad (and

even the Z80 microprocessor itself) that you are unlikely to find anywhere else.

Along with the comprehensive index, you will find it to be a complete, one-stop

reference to using and writing Notepad programs, as well as a valuable source of

additional software for your Notepad.

Thanks are due to Mark Tilley and Gavin Every at Arnor Ltd (the programming

team) as well as to Cliff Lawson the Notepad Project Manager at Amstrad Pic for

much of the technical information that appears here. Because these details came

directly from the programmers you can be sure that they are as accurate as possible.

Thanks also to John Blackburn for his invaluable assistance in the preparation of this

book, and to Richard Russell, the author of the Notepad BBC Basic interpreter, for

his assistance with the final manuscript.

Robin Nixon

To Julie and Naomi

Contents

SECTION 1 - THE PROGRAMS 1

THREE GOLDEN RULES 2

GET IT RIGHT 2

AUTO 3

USING THE PROGRAM 3

HOW IT WORKS 4

BIOMON.BAS 6

USING THE PROGRAM 6

HOW IT WORKS 7

CALC.BAS 12

USING THE PROGRAM 13

HOW IT WORKS 15

CHART.BAS 22

USING THE PROGRAM 23

HOW IT WORKS 23

COOKIE.BAS 26

USING THE PROGRAM 26

HOW IT WORKS 27

DEVIL.BAS 33

USING THE PROGRAM 34

HOW IT WORKS 35

FOOD.BAS 47

USING THE PROGRAM 48

HOW IT WORKS 49

INKEY.BAS 56

USING THE PROGRAM 57

HOW IT WORKS 57

MORTGAGE.BAS 58

USING THE PROGRAM 59

HOW IT WORKS 59

vi The Amstrad Notepad

READYREC.BAS 61

USING THE PROGRAM 62

HOW IT WORKS 63

SCALES.BAS 68

USING THE PROGRAM 69

HOW IT WORKS 69

STYLE.BAS 75

USING THE PROGRAM 76

HOW IT WORKS 77

TIMEZONE.BAS 88

USING THE PROGRAM 89

HOW IT WORKS 89

ZAP.BAS 100

USING THE PROGRAM 101

HOW IT WORKS 101

SECTION 2 - REFERENCE 121

1. CONTINUED . . . FROM THE NOTEPAD MANUAL 122

REGISTER VARIABLES 126

2. UNDOCUMENTED FEATURES 129

TRANSFERRING BBC BASIC PROGRAMS 129

QUICK MACRO ASSIGNING 129

LINE DRAWING CHARACTERS 130

PAGE DISPLAY MODE 130

USING THE FILE SELECTOR 131

PEEKING ABOUT 131

UNDOCUMENTED SELF-TEST 133

SAVING THE SCREEN 134

3. WRITING EXTERNAL PROGRAMS 145

USING THE NOTEPAD'S LCD DISPLAY 146

4. THE NOTEPAD'S INPUT/OUTPUT PORTS 151

5. THE JUMPBLOCK ENTRIES 157

KEYBOARD FUNCTIONS 158

SCREEN DISPLAY FUNCTIONS 160

PARALLEL AND SERIAL PORT FUNCTIONS 166

CLOCK FUNCTIONS 169

MEMORY ALLOCATION FUNCTIONS 170

FILE I/O FUNCTIONS 172

MISCELLANEOUS FUNCTIONS 178

Advanced User Guide vii

6. THE SYSTEM VARIABLES 182

BBC BASIC MAIN SYSTEM VARIABLES 185

7. RECOVERING FROM LOCK-OUTS 186

8. THE COMPLETE Z80 INSTRUCTION SET 188

9. THE UNDOCUMENTED Z80 INSTRUCTIONS 219

SECTION 3 - APPENDICES 225

APPENDIX 1: NC100 JUMPBLOCK ENTRY POINTS 226

APPENDIX 2: INPUT/OUTPUT PORTS (&0000 - &00FF) 229

APPENDIX 3: KEYBOARD SCAN CODES 230

APPENDIX 4: THE COMPLETE SET OF Z80 INSTRUCTION CODES. . . 232

APPENDIX 5: NEW NOTEPAD MODELS 247

APPENDIX 6: EXTRAS 248

GET CONNECTED WITH LAPCAT 248

EXPAND YOUR NOTEPAD WITH A RAM CARD 248

ORDER THE DISK OF THE BOOK 248

ORDER FORM 249

SECTION 1

THE PROGRAMS

Whether or not you are a programmer, this collection of programs has been designed

to accompany the applications provided with your Notepad. They have been written

in such a way that no knowledge of programming is required to use them and you can

call them up by simply pressing [Function] [B], so you don't even need to know any

Basic commands. Just type in the programs, check them and save them.

On the other hand, detailed descriptions accompany every program in this section,

including line by line running commentaries, descriptions of the functions and

procedures used, and an explanation of all the main arrays and variables.

Using all this information in conjunction with the listings you will be able to pick up

on the various methods used and then incorporate any ideas you like into your own

programs. To this end the variety of programs has been kept as wide as possible and

a broad range of programming styles and techniques have been used, covering areas

such as using the built-in assembler, handling strings, variables and arrays, processing

and storing data, directly accessing the display RAM, the non-standard Notepad VDU

codes and much more.

All the programs are written in BBC Basic and some contain sections of assembly

language to achieve effects that, if written in Basic, wouldn't be possible, would take

too much space to write, or would run unacceptably slowly.

The programs are self-contained, and range from a useful scientific calculator to a

world clock featuring a map of the earth. There's also a version of the classic game

Towers of Hanoi to while away the odd hour, and if you are fond of writing you

2 The Amstrad Notepad

might like to pass your efforts through the compact style checker and see how they

measure up.

Programmers may be particularly interested in the assembly language routine that

performs an instant scan of the keyboard, in a similar fashion to BBC Basic's

negative INKEY(-n), (as opposed to Basic's INKEY or INKEY$, which can only

return keys at the speed of the current keyboard repeat rate). There's a full chart of

the Notepad's character set - useful for designing screen layouts or games, and a

complete Z80 disassembler so you can delve into the inner workings of other

programs.

THREE GOLDEN RULES

There are three Golden Rules you must bear in mind when typing in program listings,

and which you should always follow in order to prevent typing mistakes - or even

crashing or erasing programs.

Golden Rule number one:

Make sure you save your work before you try it out. It's very tempting to type RUN

every so often to see the effect so far, but even if you save the program first you are

strongly advised against it - especially where there is machine code involved, as you

could lock-up your Notepad.

Golden Rule number two:

Read the listing carefully. A common error is to confuse any of the following for

each other: Lower case "1" (lower L), "i" (lower I) and "1" (one). Another common

mistake is to confuse the capital letter "O" with the number "0".

Golden Rule number three:

Don't delete any REM lines or lines containing just a colon As a matter of style

most of the programs in this book avoid GOTOs in the main code, but all of them

contain at least one ON ERROR GOTO line (and listings from other sources may

make more liberal use of GOTOs). So, if any GOTOs happen to point at a line that

you've deleted as being unnecessary you'll get into all sorts of bother.

GET IT RIGHT

If all else fails (or even if you simply prefer not to type in the programs), you can

order a disk containing all the listings fully tested and ready to run, along with a lead

and software to transfer them to the Notepad, using the form in Appendix 6.

Please also remember that a Notepad without a RAM card may only be able to hold

two to three or so small to medium Basic programs at any one time. If you really

want to make use of your computer and not run into memory storage problems you

should buy a RAM card. One such source is also given in Appendix 6.

Advanced User Guide 3

AUTO

Menu system

fiUTO
BIOMON.BRS
CfiLC.BfiS
:hrrt : "

":i.Rfip

f23l
494 C

2980 C

5=02=1
93-02-1
93-02-1

2995 C 93-C2-1
_ 28

4235
3-02-1
3-02-1

14:28
14:23
14:29
14:29
15:11

_ 10DE2.RR
COOKIE. BAS
DEVIL. BfiS
EXTERNAL , RfiP
FILESEL.RfiP
FILTRRNS.RfiP
FOOD . BfiS

ocuments ♦

5536 C 93-02-11 14:29
" 93-02-11 14:30
93-02-11 15:15
93-02-11 15:19■* 02-11 14:53

02-11 14:30

AUTO, the menu system for Basic programs

This is the first and most important of the programs because it provides an

easy-to-use interface for running the other programs, without needing to enter BBC

Basic's command mode.

It works by taking advantage of a feature built into Notepad Basic which checks for a

file called AUTO whenever you enter Basic (normally by pressing [Function] [B]). If

such a file exists Basic proceeds to load and run it, rather than just dropping into

command mode.

USING THE PROGRAM

Type in the listing and save it as AUTO before trying it out. Note that you must NOT

call it AUTO.BAS (although all the other programs should use the .BAS extension),

or the file will not be recognised by Basic's initialisation routines. It is also essential

that you save the program before running it in case you have made any typing

mistakes and something goes wrong or, perhaps, you did type it in correctly but

accidentally loaded in another program while testing it.

Once saved type:

RUN

and press [Return]. You should then see the Notepad's standard file selector which

you can now use to call up a program in the same way you might select a file for

editing in the word processor.

Because this program prevents access to Basic's command mode you might wonder

how you are now going to be able to type in more programs. The answer's simple:

you can exit from AUTO at any time by pressing [Stop]. You are then dropped into

command mode and, if you want to enter a new program, type:

NEW

4 The Amstrad Notepad

and off you go. Or, if you accidentally exited from AUTO you can get back in by

pressing [Function] [B].

HOW IT WORKS

The program is described as follows, with line numbers on the left and explanations

on the right.

30-40 Clear memory and dimension A% so that it's just big enough to

hold the machine code which will be assembled.

50-60 Assemble the code and call it.

70 If the first character of the file name is 0 then there is no file

name so print a message and exit.

80-1 10 Copy the file name returned by the machine code routine into the

variable R$.

120 Check whether the file name has an extension of .BAS. If not, it

is not a Basic program (at least, not as far as the program is

concerned, because the .BAS extension is the recommended

method of declaring whether a file is a Basic program). So, if

not, refuse to attempt to run it and call the file selector again.

130 Load the selected program into memory (replacing AUTO) and

run it.

160-190 Prepare for a two-pass assembly using a FOR...NEXT loop and

set the program point (P%) to the machine code destination

address at the start of each pass.

200 Call the Notepad's built-in File selector.

210 Set the register DE to point to the start of where the File selector

will have stored a file name if one was selected.

220-250 If the Carry flag is set then no file was selected because the user

pressed [Stop], so set the first byte of the file name which is to

be passed back to Basic (pointed to by DE) to a zero to indicate

this, and then return.

270-340 A file name was selected so copy all the characters in the name

to a known location in memory starting at 'buffer' and then

return.

Functions and procedures

PROCselect Assembles the machine code required to call the File selector

and then return the name of any selected file to a known area of

memory that can be accessed from Basic.

Main variables and arrays

A% 22 bytes of memory used to hold the assembled machine code.

Advanced User Guide 5

buffer The start of 13 bytes of memory within A% which are used to

hold any file names.

R$ Holds a copy of a selected file name ready to CHAIN it in.

J% Temporary loop counter used to control the copying of a file

name from memory into the string RS.

P% The pointer to where machine code is to be assembled by the

assembler.

found Start of machine routine where a file name has been found.

loop Label marking the start of the machine code loop to copy a file

name to a known location, useable from Basic.

The program

10 REM BBC Basic menu system

20 :

30 CLEAR

40 DIM A% 22

50 PROCselect

60 CALL A%

70 IF buffer?0 = 0 THEN CLS: PRINT "Press [Function] [B] for

menu . " : PRINT : END

80 R$=""

90 FOR J%=0 TO 11

100 IF buffer?J% THEN R$=R$+CHR$ (buffer?J%) ELSE J%=12

110 NEXT

120 IF RIGHT$(R$,4) <> " .BAS" THEN GOTO 60

130 CHAIN R$

140 :

150 DEF PROCselect

160 FOR PASS=0 TO 2 STEP 2

170 P%=A%

180 [

190 OPT PASS

200 CALL &B8C3

210 LD DE, buffer

220 JR C, found

230 LD A,0

240 LD (DE) , A

250 RET

260 .found

270 LD B,12

280 .loop

290 LD A, (HL)

300 LD (DE) , A

310 INC HL

320 INC DE

330 DJNZ loop

340 RET

350 .buffer

360]

370 NEXT

380 ENDPROC

6 The Amstrad Notepad

BIOMON.BAS

Biorhythm Monitor

Biorhythm Monitor

Enter your Date of Birth

Day (1-31) ; |

4* I

FT
Si

...Uid..'

BIOMON.BAS, showing physical, intellectual and emotional strength

The study of biorhythms is based on the ancient belief that our physical, intellectual

and emotional states run in fixed, regular cycles from the day that we are born.

Whether you believe this or not, it means that we can calculate these states for any

day of a person's life, given just their date of birth and today's date. And as the

cycles are regular, they lend themselves to rather attractive looking sine wave charts,

which used to be hand-drawn by astrologists in the days before computers.

However, this is extremely time consuming, and as the formulae for calculating the

number of days that lie between a person's birthday and any other date are complex,

they make an ideal subject for a computer program to handle. In fact, there probably

isn't a computer in existence that hasn't had a biorhythm calculator written for it (as a

demonstration of the machine's graphics capabilities as much as for any other

reason).

The program BIOMON.BAS uses the standard biorhythm cycles to plot a personal

chart for a 35-day period with today's date in the middle. It differs slightly from other

programs of this type by telling the user in plain English what each line on the chart

represents, and whether today's level is good or bad for that particular chart line.

USING THE PROGRAM

Type in the listing and save it as BIOMON.BAS before trying it out. This is essential

in case you have made any typing mistakes and something goes wrong.

Now type:

RUN

and press [Return] and you will be prompted to enter your date of birth. Type in the

day of the month on which you were born, and press [Return]. Then type in the

number of the month, press [Return], and then enter the year - you can enter this

either in full, as in 1964, or in shorthand, as in 64. Don't forget to press [Return] after

Advanced User Guide 7

entering the year. If you make a mistake at any one of these three stages, Biomon will

repeat that stage until it's happy with the result.

Biomon now makes a final, more involved check to see if the date you have just

entered actually existed. It does this by checking that the month you have entered has

at least the number of days you have given as the day of the month on which you

were born, and leap years are taken into account at this stage. If Biomon finds an

error it will report Bad date - press SPACE, and you will have to re-enter the whole

date.

If all is well with the date, the screen will clear and the plotting will begin. Each line

is drawn with a different dot pattern, making it easier to tell them apart.

When the plot is finished (it takes about half a minute), the box on the chart

representing today's date will be highlighted in inverse, and the window on the left

will show a key for each of the three chart lines together with a one-word summary

of how good or bad each one is today.

If you can't wait for the full plot you can cut it short by pressing [Q], which jumps

straight to the summary screen - useful if you're not interested in seeing the general

pattern of cycles.

HOW IT WORKS

40 Points the Basic error handler to Biomon's own error handling

routine at line 940.

Calls PROCsetup to initialise everything.

Calls PROCinput to get a birth date, followed by PROCdays to

count the number of days that have elapsed. Then calls

PROCgraph to plot the chart, and finally PROCreport to

summarise the current state of each chart line.

50

60

90-130 Initialise the main graphics constants. Altering these values will

have a major effect on the resulting chart.

Dimension all arrays and read in all the data.

Draws a box enclosing the entire screen area.

Draws a vertical line to separate the graph area from the

information window.

Prints the program title.

Calls the date prompt window into operation and returns from

the procedure.

Flushes the keyboard buffer by calling INKEY$(0) until no keys

are returned.

Prompts for the date of birth to be entered.

140-180

190

200

210

220

250

260

8 The Amstrad Notepad

270

280

290

300-320

330

340

410

420

430

440^50

460

470-520

560

590-600

610

620-630

640

650

660

690

700

Repeatedly prompts for the day of the month until the input is

within legal limits.

Repeatedly prompts for the month unul the input is within legal

limits.

Repeatedly prompts for the year until the input is within legal

limits.

Check to see if the date specified exists.

Informs the user if the date doesn't exist and waits for the

message to be acknowledged.

Repeats the entire input process if the date entered doesn't exist.

Extracts the current day of the month and the current year from

the system clock.

Extracts the name of the month from the system clock and

converts it into a number between 1 and 12, by comparing it

against each entry in the array m$().

Multiplies the elapsed years by 365 to get the rough number of

days involved.

Adjust the days according to the birth month and current month.

Adjusts the days further according to the day of the month of

birth and the current day of the month.

Adjust the days further according to the number of leap days

involved.

Calculates whether y% is a leap year or not.

Clear the information box and print the current date, together

with the birthdate being plotted, in preparation for the plot.

Sets up a graphics window and origin, and clears the new

graphics window.

Draw the chart axis, and dotted boxes to delimit each of the 35

days to be charted.

Sets the start day to be 17 days ago and starts the main

FOR...NEXT loop for the X coordinate, checking for the [Q] key

at the start of each loop.

If [Q] wasn't pressed, calls PROCbio() inside a further

FOR...NEXT loop to plot the current Y position of each line.

Ends the main plot loop, inverts today's box on the chart and

exits the procedure.

Fetches the cycle length for the current line and whether it is in

its dot or dash phase.

Plots a new point for the current line if it is inside its dot phase.

Advanced User Guide 9

710 Checks to see if current line's dot or dash phase has reversed. If

so, flips the line's dot phase flag.

720 Stores the new dot phase flag setting for the current line.

760-830 Draw a short sample of each line's dot pattern to be used as a

key, during which time a score for each is calculated in line 810,

representing an entry in the array of comments well$(). Display

the report header when the loop is complete.

840-860 Print the name of each cycle, together with a single-word

comment from the list held in well$0, pointed to by the relevant

entry in the score table well%() (which was calculated back in

line 810).

870 Waits until [Space] is pressed before returning from the

procedure.

890 Holds the data for the number of days in each month.

900 Holds the names of each month, as used in line 420 to calculate

the number of the current month.

910 Holds the cycle length in days for each of the three chart lines,

followed by the length of the dot and dash for that line, followed

by the initial dot-dash phase to start with.

920 Holds the single-word comments which are used at the end of

each plot to summarise the state of each chart line.

940 Points the Basic error handler to a full error report in the event

of a further error occurring while attempting to run the menu

program AUTO. This is in case AUTO isn't present on your

Notepad.

950 Attempts to run the menu program AUTO if the error was

generated by pressing the [STOP] key.

960 If the error was caused by something else, or if AUTO isn't on

your Notepad, a full error report is displayed.

970 After the error report the Notepad will be left in BBC Basic, so

this message is displayed to remind users of how to return to the

Notepad main menu.

Functions and procedures

PROCsetup Dimensions arrays and reads in all data, initialises main variables

and draws a box.

PROCinput Prompts for the day, month and year of birth.

PROCwinl Sets up a text window for the birthdate prompt.

PROCwin2 Sets up a date window for the birthdate input.

PROCdays Calculates number of days elapsed since birth.

10 The Amstrad Notepad

PROCgraph Plots a biorhythm chart for the birthdate just entered.

PROCbio Plots a dot at the current X coordinate for any of the three lines.

Called by PROCgraph.

PROCreport Displays a key for the graph and a single-word summary for

each line.

FNleap Returns TRUE or FALSE according to whether the passed

variable is a leap year.

Main variables and arrays

m%() Number of days in each month.

m$() Abbreviation of month names.

period%() Length of each cycle in days.

gap%() Length of each line's dot and dash in pixels.

flag%() Keeps count of each line's current dot or dash phase.

well%() Numbers representing how good or bad each cycle is today.

well$() Store of single-word summaries.

yc% Y centre of graphic window.

xc% X centre of graphic window.

px% Number of pixels per day horizontally.

xm% Width of graphic window.

ym% Height of graphic window.

d% Number of days since birth, as returned by PROCdays.

sd% Number of days since birth up to 15 days ago (the start of the

plot).

dl% Day of birth.

ml% Month of birth.

yl% Year of birth.

d2% Today's day of the month.

m2% Today's month.

m3% Today's year.

t% Number of current line being processed (1, 2 or 3).

quit% Whether Q was pressed during plot.

The program

10 REM Biorhythms

20 :

30 CLS

40 ON ERROR GOTO 940

50 PROCsetup

Advanced User Guide 11

60 REPEAT : PROCinput : PROCdays : PROCgraph : PROCreport : UNTIL FALSE

70 :

80 DEF PROCsetup

90 yc%=31:REM Y Centre of graphic window

100 xc%=155:REM X Centre of graphic window

110 px%=10:REM No. of pixels per day horizontally

120 xm%=310:REM Width of graphic window

130 ym%=61:REM Height of graphic window

140 DIM m%(12):F0R d%=l TO 12:READ m%(d%):NEXT

150 DIM m$(12):F0R d%=l TO 12:READ m$(d%):NEXT

160 DIM period%(3) ,gap%(3,2) ,flag%(3) ,well%(3) ,well$(7)

170 FOR t%=l TO 3:READ period% (t%) , gap% (t%, 0) , gap% (t%, 1) , flag% (t%) :NEXT

180 FOR w%=l TO 7:READ well$ (w%) : NEXT

190 MOVE 0,0:DRAW 479,0:DRAW 479,63:DRAW 0,63:DRAW 0,0

200 MOVE 167,0:DRAW 167,63:PRINT TAB (5, 1) ;CHR$ (17) ;

210 PRINT "Biorhythm Monitor" ; CHR$ (18)

220 PROCwinl:CLS:ENDPROC

230 :

240 DEF PROCinput

250 REPEAT: UNTIL INKEY$ (0) ="" : REM Flush keyboard buffer

260 PROCwinl : CLS : PRINT TAB (1 , 0) ; "Enter your Date of Birth"; :PROCwin2 :

REPEAT

270 REPEAT: CLS: INPUT" Day (1-31): "dl%:UNTIL dl%>0 AND dl%<32

280 REPEAT: CLS: INPUT" Month (1-12): "ml%:UNTIL ml%>0 AND ml%<13

290 REPEAT: CLS: INPUT" Year (1900-) : "yl%:UNTIL yl%<100 OR yl%>1900

300 IF yl%<100 yl%=yl%+1900

310 leg%=TRUE:IF yl%<1900 OR yl%>2020 leg%=FALSE

320 IF dl%>m%(ml%)+FNleap(yl%)*(ml%=2) leg%=FALSE

330 IF leg%=0 CLS:PRINT CHR$(17)" Bad date - press SPACE" ; CHR$ (18) ; :

g%=GET

340 UNTIL leg%:ENDPROC

350 :

360 DEF PROCwinl :VDU 28, 1, 6, 26, 3 :ENDPROC

370 :

380 DEF PROCwin2:VDU 28, 1, 5, 26, 5 :ENDPROC

390 :

400 DEF PROCdays

410 d2%=VAL(MID$ (TIME$,5,2)) : y2%=VAL (MID$ (TIME$,12, 4))

420 m2%=0 : REPEAT : m2%=m2%+l : m$=m$ (m2%) : UNTIL m$=MID$ (TIME$, 8, 3)

430 d%=365* (y2%-yl%)

440 IF m2%>l FOR m%=l TO m2%-l : d%=d%+m% (m%) :NEXT

450 IF ml%>l FOR m%=l TO ml%-l : d%=d%-m% (m%) : NEXT

4 60 d%=d%+d2%-dl%

470 y%=yl%-yl% MOD 4 : REPEAT : y%=y%+4

480 IF y%<y2% IF FNleap(y%) d%=d%+l

4 90 UNTIL y%>y2%

500 IF yl%=y2% IF FNleap(yl%) AND ml%<3 AND m2%>2 d%=d%+l : ENDPROC

510 IF FNleap(yl%) AND ml%<3 d%=d%+l

520 IF FNleap(y2%) AND m2%>2 d%=d%+l

530 ENDPROC

540 :

550 DEF FNleap(y%)

560 IF y%MOD4=0 AND (y%MOD100<>0 OR y%MOD400=0) THEN =TRUE ELSE =FALSE

570 :

580 DEF PROCgraph

590 PROCwinl : CLS : PRINT TAB (3 , 0) ; "Plot on ";MID$ (TIME$, 5, 11)

600 PRINT TAB (4, 2) ; "For DoB ";CHR$ (17) ;dl%; "-";ml%; "-";yl%;CHR$ (18)

610 VDU24, 168,-1; 478; 62; 29, 168; 1; : CLG

620 MOVE 0,yc%:PLOT 21 , xm%, yc% : MOVE xc%-px%/2, yc% :PLOT l,px%,0

630 FOR x%=0 TO xm% STEP px%:M0VE x%,0:PLOT 21, x%, ym%:NEXT

12 The Amstrad Notepad

640 sd%=d%-17:quit%=FALSE:FOR x%=0 TO xm% : IF INKEY(0)=81

quit%=TRUE : x%=xm%

650 IF NOT quit% FOR t%=l TO 3 :PROCbio (t%) :NEXT

660 NEXT:MOVE xc%-4,0:PLOT 102 , xc%+4 , ym% : VDU26 :ENDPROC

670 :

680 DEF PROCbio(t%)

690 period%=period% (t%) : flag%=flag% (t%) : gap%=gap% (t%, flag%)

700 IF flag% PLOT 69, x%, yc%+ (yc%*SIN (2*PI/period%* (sd%+x%/px%)))

710 IF x% MOD gap%=0 flag%=flag%+l : IF flag%=2 flag%=0

720 flag%(t%)=flag%:ENDPROC

730 :

740 DEF PROCreport

750 PROCwinl:CLS

760 FOR t%=l TO 3:period%=period% (t%) : flag%=0

770 FOR x%=8 TO 28 : gap%=gap% (t% , flag%)

780 IF flag% PLOT 69 , x% , 3 6-t%*8

7 90 IF x% MOD gap%=0 flag%=flag%+l : IF flag%=2 flag%=0

800 NEXT

810 well% (t%) = (yc%+ (yc%*SIN (2*PI/period%* (sd%+ (xc%+px%) /px%)))) /

(ym%/6)+2

820 IF well%(t%)>7 well%(t%)=7

830 NEXT:PRINT TAB (0, 0) ; CHR$ (19) ; "Your Constitution Today Is" ; CHR$ (20)

840 PRINT TAB (5, 1) ; "Physically"; SPC (5) ;well$ (well% (1)) ;

850 PRINT TAB (5, 2) ; "Emotionally" ; SPC (4) ; well$ (well% (2)) ;

860 PRINT TAB (5, 3) ; "Intellectually " ; well$ (well% (3)) ;

870 REPEAT: UNTIL INKEY (0) =32 : ENDPROC

880 :

890 DATA 31,28,31,30,31,30,31,31,30,31,30,31

900 DATA Jan, Feb, Mar, Apr, May, Jun, Jul , Aug, Sep, Oct , Nov, Dec

910 DATA 23,8,8,0,28,1,8,0,33,4,4,0

920 DATA Awful , Poor, Fair , Normal , Good, Great , Superb

930 :

940 ON ERROR GOTO 960

950 VDU 26:CLS:IF ERR=17 THEN CHAIN "AUTO"

960 REPORT: PRINT" at line ";ERL

970 PRINT :PRINT"Press [Function] [X] for Notepad Main Menu"

CALC.BAS

Scientific Calculator

- Scientific Calculator
66/33 . 7

—
ai 1 . 95845697

1/11
2"7

—
m 9 . 09090909E-2

—
580 128 TOTAL

SIN(32)
—

£0 0.551426681
8.5514266811m i

CALC.BAS, a powerful scientific calculator

Most computer users complain at some time or another about the lack of a real

calculator program for their system, which on the whole is a justifiable complaint -

Advanced User Guide 13

especially in the PC compatible world, where hardware costing thousands of pounds

often comes with no software installed.

By contrast, Amstrad Notepad users are lucky enough to have a built-in calculator

featuring a large, friendly display. But sometimes it just isn't up to the job, especially

where you need to use scientific functions, or recall the results of previous

calculations.

The program CALC.BAS aims to solve some of these frustrations by providing a

large scratch pad on to which you can jot calculations of a highly complex nature.

You are allowed to use all the functions normally available from BBC Basic inside

your calculations, and you enter these in a large window on the left of the screen,

while a matching window on the right displays the results of each calculation.

The windows scroll in both directions and are synchronised, allowing you to recall

previous entries and their results. You can even modify earlier calculations without

having to type in the whole lot again.

Calc remembers the result of the current calculation and displays it in a separate,

stationary window so that you can scroll freely through several screens of work and

not lose your position. It clears this value when you next enter a line.

A special feature of CALC is its ability to treat the value in this window as a running

total accumulator. So, putting a +, -, * or / symbol at the start of your calculation

turns it into an expression that takes the value in the Total window as its input. (See

USING THE PROGRAM for a more detailed explanation of how this works).

Although it doesn't support the use of variables or memories, you will be surprised at

how useful this program is (it even gives the result of each calculation in

hexadecimal, for any programmers who wouldn't otherwise have found Calc suited to

their particular needs).

USING THE PROGRAM

Type in the listing and save it as CALC.BAS before trying it out. Type:

RUN

and the cursor will now be sitting in the bottom left of the Input window, between the

two arrows that indicate where your input will go. Now type in any number, or legal

BBC Basic expression such as:

30+ (SIN (45))

Notice that your input is shown in bold text as you type. In fact, the contents of the

bottom line of the Input window is always shown in bold, because when you are

14 The Amstrad Notepad

scrolling through previous calculations it serves to highlight the one currently under

the cursor.

Press [Return] and Calc will scroll both the Input and Result windows up one line,

and the line in the Result window opposite the expression you have just entered

shows the result in both hexadecimal (on the left) and decimal (on the right). The

Total window just gives the result in decimal.

To try out the scrolling facility enter a few simple expressions, until the first one has

completely scrolled off the top of the display. Now press [Up] a few times, watching

as your previous entries (and their results) scroll back into view. Note the expressions

turning bold one by one as they pass through the bottom line of the Input window.

Now stop at any time and edit an expression (one of the features of Calc is that it is

permanently in edit mode, so you can change whatever is under the cursor at any

time). Remember that you MUST press [Return] to register the change - if you move

off the line with [Up] or [Down], Calc will restore the old contents of the line.

You might think that Calc is limited by the seeming inability to pass on any results to

the next calculation you enter. For example, if you were to enter:

10

then both the Result and Total windows would show the answer 10. But what if you

wanted to add 10 to the result from the last calculation? Even the most basic pocket

calculators allow you to do this by default. If you enter a sum like 4 + 30 + 15 on

any calculator, it displays the interim total each time another operator key is pressed.

Calc allows you to emulate this quite well, simply by adding one of the four basic

arithmetic operators to the start of an expression. For example, if you were to enter

this line instead:

+10

Calc assumes that you meant add 10 to the current running total - which is exactly

what is wanted. The same goes for more complex expressions such as:

* (COS (100) +PI) /9. 073

which means multiply the current total by the result of this expression. In Basic the

process might look something like this:

total=total* ((COS (100) +PI) /9. 073)

Notice the added brackets around everything after the *. This is because syntactically,

Calc evaluates the whole expression (minus the operator, of course) BEFORE

applying it to the total.

Advanced User Guide 15

The next time you enter an expression without a preceding operator Calc clears the

running total. If you would prefer to clear it to zero, just enter 0. Or to clear the entire

scratch pad, type:

CLEAR

in upper case (because BBC Basic requires upper case for all keywords) before

pressing [Return], and then confirm your decision with the [Y] key.

Full line editing is provided by Calc, and while it may not be quite as good as the

Notepad's default line editor, it does include all the standard editing key functions

you would expect. Here's a complete list of the movement and editing keys used in

Calc:

[Right] Cursor right - Moves the cursor one character to the right.

[Left] Cursor left - Moves the cursor one character to the left.

[Up] Previous line - Scrolls the Input and Result windows down, and

places the previous expression on the editing line.

[Down] Next line - Scrolls the Input and Result windows up, and places

the next expression on the editing line.

[Del->] Delete character under cursor - The rest of the line is shunted to

the left, while the cursor remains stationary.

[<-Del] Delete character to left of cursor - The rest of the line is shunted

to the left, and the cursor also moves one position to the left.

[Control] [E] Delete to end of line - All characters to the right of the cursor

are deleted, as well as the character under the cursor (ideal for

clearing an old line ready for a new expression).

HOW IT WORKS

30 Calls the setup procedure, and points the Basic error handler to

Calc's own error handling routine.

40 Endlessly calls PROCinput until [Stop] is pressed.

70 Draws the editing line arrows.

80-100 Draw all three window borders.

1 10 Prints a column of equal signs between the main windows and

prints the Total window's title.

120 Prints the program title.

130 Dimensions the arrays, calls PROCclear to print a 0 in the Total

window, and tells Basic to display all numbers to 10 significant

figures (the maximum).

160 Runs through the arrays A$() and B$(), setting all elements to ""

(empty).

16 The Amstrad Notepad

170

190-250

280

290-350

360

370

380

390

400

430-440

470^80

510-520

550-560

590

630-640

670-690

Resets both array pointers, clears the total and displays it in the

Total window.

Set up four text windows. In order of appearance they are the

editing line, the Input window, the Results window and the Total

window.

Sets up the edit window, pulls the current calculation from A$()

into e$, gets its length, sets the editing cursor to the left edge of

the window, prints the expression in bold, starts the main input

loop and reads a key press into key%.

Check the key in key%, and carry out the appropriate editing or

movement function.

If the key press was a normal character, inserts it into e$ at the

current position by calling PROCinsert.

When [Return] is pressed, checks if CLEAR was typed. If so,

calls PROCwipe - but if e$ is empty, it's forced to contain 0 for

the sake of appearance.

Puts the new expression into A$() at the current position, calls

PROCcalc to evaluate it and update B$(), and advances the array

pointer ptr% (and max% if ptr% was already at the highest

element used so far).

Checks that max% hasn't exceeded the limits of the arrays A$()

and B$() - otherwise adjusts max%.

Draws the new Input and Result window contents and returns.

If x% isn't already at the left-hand side, move it left and redraw

the editing line to show the new cursor position.

If x% isn't already at the end of the line, move it right and

redraw the editing line to show the new cursor position.

If the pointer isn't already at the start of the array, move it to the

previous expression, display the new window contents and fetch

the new expression for editing.

If the pointer isn't already at the last entry in the array, move it

to the next expression, display the new window contents and

fetch the new expression for editing.

Calls PROClist to update the main windows, pulls the current

calculation from A$() into e$, gets its length, sets the editing

cursor to the left edge of the window, sets up the edit window

and prints the expression in bold.

Insert the character key% into e$, if it isn't already at maximum

length.

Remove character to left of current character from e$, unless at

start of e$.

Remove current character from e$, unless at end of e$.

Truncate e$ at the current position, unless at end of e$.

Print e$ in bold, followed by the current character in inverse to

act as the cursor.

Clear Input window and fill it from A$(), starting from either

five lines before the current line, or the start of the array if less

than five entries exist.

Clear Result window and fill it from B$(), starting from either

six lines before the current line, or the start of the array if less

than six entries exist.

Fetches the current expression from A$() into e$, and exits if it's

a null string.

Splits the first character of e$ and puts its ASCII code into o%,

to check for an operator on the next line.

If o% is one of the four main maths symbols, sets the flag

carry% to TRUE.

If carry% is TRUE, passes the operator and the rest of e$ to

FNcarry() to do an accumulative operation on the expression -

otherwise, just evaluates e$ as normal. Either way, puts the result

in the accumulator "tot".

Makes separate strings holding the decimal and hex versions of

the new total.

Joins both strings together, padding so that the hex number is on

the left and the decimal is on the right, puts the resulting string

into B$() at the current position, then displays the new total.

Convert tot into a string, padded out to fill the Total window

exactly, and print it bold in that window.

Perform addition, subtraction, multiplication or division with the

accumulator tot and the result of the expression in e$.

In answer to the user typing CLEAR, display a safety message

on the editing line in bold. If the user presses [Y] in response,

clear the entire calculator with PROCclear.

Calls PROCnewline to redraw the main windows and put the

current calculation back in the editing line.

Resets Basic's numeric accuracy to normal and attempts to run

the menu program AUTO if the error was generated by pressing

the [Stop] key.

If the error was No such file, AUTO isn't on your Notepad so

jump to the full error report.

If the program gets to here an illegal calculation was made. The

user is informed and asked to acknowledge by pressing [Space].

18 The Amstrad Notepad

1310

1320

Functions and

PROCsetup

PROCclear

PROCinput

PROCleft

PROCright

PROCup

PROCdown

PROCnewline

PROCinsert

PROCdell

PROCdel2

PROCdeB

PROChilite

PROClist

PROClistlt

PROClistrt

PROCcalc

PROCshowacc

PROCnewline is called to redraw the main windows and

redisplay the current calculation on the editing line, and a direct

jump is made back to main loop at line 40. Important: This can

only be allowed to happen a certain number of times before the

Basic stack overflows with PROC calls that the error handler has

jumped out of before reaching the ENDPROC.

Displays a full error report.

After the error report the Notepad will be left in BBC Basic, so

this message is displayed to remind users of how to return to the

Notepad main menu.

procedures

Draws the screen and sets up arrays and main variables.

Clears the Input and Result windows, resets the Total window.

Takes input from the keyboard, and calls relevant routines for

inserting and deleting characters, or moving around.

Moves the cursor one character to the left.

Moves the cursor one character to the right.

Scrolls both windows down, and places the previous expression

on the editing line.

Scrolls both windows up, and places the next expression on the

editing line.

Redraws both windows at the current position and fetches the

current expression for editing.

Inserts a character into the input line.

Performs [<- DEL].

Performs [DEL ->].

Performs [Control] [E].

Prints the current expression in bold, and inverses the current

character to act as a screen cursor.

Main routine to update both Input and Result windows by calling

PROClistlt and PROClistrt.

Redraws the left-hand (Input) window.

Redraws the right-hand (Result) window.

Evaluates the expression just entered, and decides whether to

make this the new total, or take the current total as the

expression's input, on the basis of the first character. If the first

character is + - * or /, FNcarry() is called to evaluate the new

total.

Displays the current running total in the Total window.

Advanced User Guide 19

PROCwipe Displays a safety prompt before calling PROCclear to clear the

entire "scratch pad".

FNcarryO Takes the current total and either adds to it, subtracts from it,

multiplies it by or divides it by the result of the expression just

entered.

Main variables and arrays

A$() The input array, which holds all the calculations.

B$() The results array, as displayed in the Results window.

max% Pointer to the highest element of A$() and B$() currently used.

ptr% Pointer to the current element of A$() being edited, and also the

current element of B$() into which the result will be placed,

tot The running total accumulator.

key% The current key press being examined.

e$ The expression currently being edited.

1% The current length of the expression being edited.

x% The current cursor position on the editing line.

o% The mathematical operator at the start of the expression, if any.

t$ Result of current expression in decimal

h$ Result of current expression in hexadecimal.

The program

10 REM Scientific Calculator

20 :

30 PROCsetup:ON ERROR GOTO 1270

40 REPEAT :PROCinput: UNTIL FALSE

50 :

60 DEF PROCsetup

70 VDU 26:CLS:PRINT TAB (0, 6) ;CHR$ (27) ;CHR$ (16) ; TAB (26, 6) ;CHR$ (27) ;

CHR$ (17) ;

80 MOVE 0,6: DRAW 162, 6: DRAW 162, 57: DRAW 0,57: DRAW 0,6

90 MOVE 180,6:DRAW 340,6:DRAW 340,57:DRAW 180,57:DRAW 180,6

100 MOVE 364,6:DRAW 452,6:DRAW 452,18:DRAW 364,18:DRAW 364,6

110 FOR y%=l TO 6:PRINT TAB (28, y%) ;"=": NEXT : PRINT TAB (66, 4) ; "TOTAL";

120 PRINT TAB (58, 1) ;CHR$ (17) ; "Scientific Calculator"; CHR$ (18)

130 DIM A$ (100) ,B$ (100) : PROCclear : @%=£A0C :ENDPROC

140 :

150 DEF PROCclear

160 FOR p%=0 TO 100:A$ (p%)="" :B$ (p%)="" :NEXT

170 max%=0 : ptr%=0 : tot=0 : PROCshowacc : ENDPROC

180 :

190 DEF PROCwinin:VDU 28, 1, 6, 25, 6:ENDPROC

200 :

210 DEF PROCwinlist :VDU 28, 1, 5, 25, 1 :ENDPROC

220 :

230 DEF PROCwintot:VDU 28, 31, 6, 55, 1 :ENDPROC

240 :

20 The Amstrad Notepad

250 DEF PROCwinaccrVDU 28, 61, 6, 74, 6:ENDPR0C

260 :

270 DEF PROCinput

280 PROCwinin:e$=A$ (ptr%) :x%=l : 1%=LEN (e$) :PROChilite: REPEAT :Jcey%=GET

2 90 IF key%=242 PROCleft

300 IF key%=243 PROCright

310 IF key%=240 PROCup

320 IF key%=241 PROCdown

330 IF key%=127 PROCdell

340 IF key%=33 PROCdel2

350 IF key%=5 PROCdel3

3 60 IF key%<>33 AND key%<>5 AND key%>31 AND key%<127 PROCinsert

370 UNTIL key%=13:IF e$=nCLEAR" PROCwipe : ENDPROC ELSEIF e$="" e$="0"

380 A$ (ptr%)=e$:PROCcalc:ptr%=ptr%+l:IF ptr%>max% max%=max%+l

390 IF max%>100 max%=max%-l : ptr%=ptr%-l

400 PROClist: ENDPROC

410 :

420 DEF PROCleft

430 IF x%=l ENDPROC

440 x%=x%-l:PROChilite: ENDPROC

450 :

460 DEF PROCright

470 IF x%=1%+1 ENDPROC

480 x%=x%+l:PROChilite: ENDPROC

490 :

500 DEF PROCup

510 IF ptr%=0 ENDPROC

520 CLS:ptr%=ptr%-l : PROCnewline : ENDPROC

530 :

540 DEF PROCdown

550 IF ptr%=max% ENDPROC

5 60 CLS :ptr%=ptr%+l : PROCnewline : ENDPROC

570 :

580 DEF PROCnewline

590 PROClist :e$=A$ (ptr%) : x%=l : 1%=LEN (e$) : PROCwinin : PROChilite : ENDPROC

600 :

610 DEF PROCinsert

620 IF 1%=24 ENDPROC

630 e$=LEFT$ (e$, x%-l) +CHR$ (key%) +RIGHT$ (e$,l%+l-x%)

640 1%=1%+1 : x%=x%+l : PROChilite : ENDPROC

650 :

660 DEF PROCdell

670 IF x%=l ENDPROC

680 e$=LEFT$ (e$, x%-2) +RIGHT$ (e$, l%+l-x%)

690 x%=x%-l : 1%=1%-1 : PROChilite : ENDPROC

700 :

710 DEF PROCdel2

720 IF x%=1%+1 ENDPROC

730 e$=LEFT$ (e$, x%-l) +RIGHT$ (e$, l%-x%)

740 1%=1%-1: PROChilite: ENDPROC

750 :

760 DEF PROCdel3

770 IF x%=1%+1 ENDPROC

780 e$=LEFT$ (e$,x%-l)

790 I%=x%-1: PROChilite -.ENDPROC

800 :

810 DEF PROChilite

820 c$=MID$ (e$,x%,l) :IF c$="M c$=" "

830 CLS:PRINT CHR$ (17) ; e$; TAB (x%-l , 0) ;CHR$ (14) ;c$;CHR$ (15) ;CHR$ (18) ;

840 ENDPROC

Advanced User Guide

850 :

860 DEF PROClist

870 PROJwinlist :CLS:IF ptr%<>0 PROClistlt

880 PROClistrt : ENDPROC

890 :

900 DEF PROClistlt

910 IF ptr%<5 top%=5-ptr%:p%=0 ELSE top%=0 :p%=ptr%-5

920 FOR y%=top% TO 4:PRINT TAB (0, y%) ;A$ (p%) ;: p%=p%+l : NEXT : ENDPROC

930 :

940 DEF PROClistrt

950 PROCwintot :CLS:IF ptr%<6 top%=5-ptr%:p%=0 ELSE top%=0 :p%=ptr%-5

960 FOR y%=top% TO 5:PRINT TAB (0 , y%) ; B$ (p%) ;: p%=p%+l : NEXT : ENDPROC

970 :

980 DEF PROCcalc

990 e$=A$ (ptr%) :IF e$="" ENDPROC

1000 o%=ASC (LEFT$ (e$, 1))

1010 IF o%=42 OR o%=43 OR o%=45 OR o%=47 carry%=TRUE ELSE carry%=FALSE

1020 IF carry% tot=FNcarry (o%,RIGHT$ (e$, LEN (e$) -1)) ELSE tot=EVAL(e$)

1030 t$=STR$ (tot) :h$="£"+STR$ (tot)

1040 B$ (ptr%)=h$+STRING$ ((25-LEN(h$)) -LEN(t$) , CHR$ (32)) +t $: PROCshowacc

1050 ENDPROC

1060 :

1070 DEF PROCshowacc

1080 t$=STR$ (tot) :tot$=STRING$ (14-LEN(t$) , CHR$ (32))+t$

1090 PROCwinacc:CLS: PRINT CHR$ (17) ; tot$;CHR$ (18) ;

1100 ENDPROC

1110 :

1120 DEF FNcarry (o%,e$)

1130 IF o%=42 THEN =tot*EVAL (e$)

1140 IF o%=43 THEN =tot+EVAL (e$)

1150 IF o%=45 THEN =tot-EVAL (e$)

1160 IF o%=47 THEN =tot/EVAL (e$)

1170 :

1180 DEF PROCwipe

1190 PROCwinin : CLS

1200 PRINT TAB (6, 0) ;CHR$ (17) ; "Clear (Y/N) ?";CHR$ (18) ;

1210 REPEAT : g%=GET AND 223: UNTIL g%=89 OR g%=78:CLS:IF g%=89 PROCclear

1220 PROCnewline: ENDPROC

1230 :

1240 REM This last section handles lines rejected by EVAL.

1250 REM Note: Repeated errors will eventually overflow the stack.

1260 :

1270 IF ERR=17 @%=&90A:VDU 26 : CLS : CHAIN"AUTO"

1280 IF ERR=214 GOTO 1310

1290 PROCwinin : CLS : PRINT TAB (2 , 0) ; CHR$ (17) ; "Error - press SPACE";

CHR$ (18) ;

1300 REPEAT: UNTIL GET=32 : CLS : PROCnewline : GOTO 40

1310 VDU 26: CLS: REPORT: PRINT" at line ";ERL

1320 PRINT: PRINT "Press [Function] [X] for Notepad Main Menu"

22 The Amstrad Notepad

CHART.BAS

Programmer' s ASCII Chart

■ 0 800 8 □ 808 16 ► 810 24 t 818 32 820 40 (828 48 e 830 56 8 838
1 9 0 £09 17 i 81 1 25

26
i 819 33 821 41) 829 49 i 831 57 9 839

2 £02 10 E SOP 18 * 812 * 81fi 34 ■ ■S22 42 * 82R 50 2 532 58 83P
3 £03 11 <? ■SOB 19 ii 813 27

23
81B 35 # 823

824
43 + 82B 51 3 833 59 83B

4 ♦ 504 12 80c 20 i 814 L. 81C 36 $ 44 , 82C 52 4 834 60 < 83C
5 1 803 13 : 80D 21 815 29 • 81D 37 'A 825 45 - 82D 53 5 835 61

—
83D

6 14 geg 22 ■ 816 30 81E 38 8 826 46 . 82E 54 6 836 62 >
m7 • <S07 15 l 80F 23 i 817 31 81F 39 T 827 47 / 82F 55 7 837 63 ?

CHART.BAS, showing the first 64 Notepad characters

A program that displays the entire character set for a particular computer is always a

welcome addition to any programmer's library of utilities. CHART.BAS is such a

program for the Amstrad Notepad, listing each of the 256 available characters

together with their ASCII codes in both decimal and hexadecimal. It's worth

mentioning that you can't normally display characters with an ASCII code of less

than 32 as these are control characters, used for controlling virtually every aspect of

your Notepad's screen display, and any attempt to print them with a command such

as:

PRINT CHR$ (12)

will usually have a quite unexpected effect (unless, of course, that was your

intention!) - in this case, the screen would be cleared exactly as if you had typed a

CLS command. It might seem odd, then, that each of the 32 control characters (from

0 to 31) has been given a real, six-by-six pixel shape, just like all the others in the

character set (a quick peek at the User Guide shows this to be true). So how can they

be displayed?

The solution lies in the unprintable control code, 27. To be precise: The author of

BBC Basic thoughtfully included this control code to allow any ASCII character to be

printed as a character, without being interpreted by the VDU drivers as a control

code.

Here is the corrected version of the example above which, using ASCII code 27,

manages to print the actual symbol represented by ASCII code 12:

PRINT CHR$ (27) ;CHR$ (12)

Remember that whatever character you want to display MUST be the very next thing

printed. If you split the command across two separate lines, you can't miss off the

semicolon, otherwise the carriage return that would normally happen will be

interpreted as a symbol by ASCII code 27, and printed as such. The next line will no

longer be under the control of code 27, so it will behave like any other control code

itself and (you guessed it) the screen will clear again.

Advanced User Guide 23

So if you want to use any of the characters in the Notepad's character set, and you

aren't sure if they will be interpreted literally or as control codes, your best bet is

always to precede them with a CHR$(27);. Alternatively you can use the equivalent

VDU command, like this:

VDU 27,12

and you won't have to worry about appending a semi-colon in order to prevent an

unwanted carriage return.

USING THE PROGRAM

Chart is one of the simplest of all the programs in this book, but you still need to

know how to use it. So type in the listing and save it as CHART.BAS before trying it

out. Type:

RUN

(remembering to press [Return]), and the first 64 characters of the Notepad's

character set will be displayed in eight lines, each containing eight columns of codes

separated by vertical bars.

In any column, the information for a code is shown in the order: Decimal, ASCII

code, the Character itself, hexadecimal ASCII code. To see another 64 codes, press

[Down] and the screen will be redrawn with the next page of characters. Press [Up] to

go back to the previous page, and [Stop] to exit the program altogether.

When you see a character you would like to include in your programs, jot down its

decimal (or hexadecimal) code for later on. BBC Basic will happily understand either

format in a CHR$() or VDU statement.

HOW IT WORKS

30 Points the Basic error handler to Chart's own error handling

routine at line 290.

40 Calls PROCsetup to initialise the program, then sits in an infinite

REPEAT...UNTIL loop calling PROCkeys.

80 Sets the page counter (page%) to zero and calls PROCpage to

show the first screen of 64 characters.

120 Sits in a REPEAT...UNTIL loop reading all key presses into g%,

until one has the ASCII value of either the [Up] or [Down] key.

130 If the ASCII value of the key just pressed (g%) was that of the

[Up] key (240), and page% isn't already zero, decrements page%

and calls PROCpage to show the new page before exiting the

procedure.

140 If the ASCII value of the key just pressed (g%) was that of the

24 The Amstrad Notepad

[Down] key (241), and page% isn't already zero, decrements

page% and calls PROCpage to show the new page before exiting

the procedure.

180 Begins a FOR...NEXT loop of the column counter (x%).

190 Begins a nested FOR...NEXT loop of the row counter (y%).

200 Calculates the ASCII code of the current character by first

multiplying the page counter (page%) by 64 to obtain the code

of the first character in the current page. Next the correct offset

within the page is obtained by multiplying the column counter

(x%) by 8 and adding the row counter (y%). Finally this offset is

added to the code of the first character in the page to obtain the

current character's ASCII code.

210 Converts the current character's ASCII code into the string dec$,

and pads it out with enough spaces to ensure that it will be

right-justified when printed.

220 Converts the current character's ASCII code into hexadecimal

and stores it in the string hex$, and if necessary pads it with a

zero character to ensure that it will be the conventional width for

hex characters, which is two characters for eight bit numbers

(three once the ampersand & is added to the front).

230 Prints dec$ at the correct column position, which is x%*10 as

each field is 10 characters wide. Adds a trailing space and a

semicolon - to ensure the next data printed follows immediately

after the space.

240 Prints the character itself, using CHR$(27) to ensure it is not

interpreted by the VDU drivers as a control code, and adds a

space, followed lastly by hex$.

250-270 End the nested row and column loops, and return from the

procedure.

290 Points the Basic error handler to a full error report in the event

of a further error occurring while attempting to run AUTO. This

is in case AUTO isn't present on your Notepad.

300 Attempts to run the menu program AUTO if the error was

generated by pressing the [Stop] key.

310 If the error was caused by something else, or if AUTO isn't on

your Notepad, a full error report is displayed.

320 After the error report the Notepad will be left in BBC Basic, so

this message is displayed to remind users of how to return to the

Notepad main menu.

Functions and procedures

PROCsetup Resets the page number and displays the first page of codes.

Advanced User Guide 25

PROCkeys Reads the keyboard for the [Up] and [Down] keys, changing and

displaying pages if appropriate.

PROCpage Displays the current page of 64 ASCII characters.

Main variables and arrays

page% The current page number, from 0 to 3.

char% The current ASCII character being displayed.

dec$ A string containing the decimal ASCII code of the current

character. It is padded with one or two spaces as necessary to

right-align the number.

hex$ A string containing the hexadecimal ASCII code of the current

character. It is padded with a single zero as necessary to

right-align the number.

g% The ASCII value of the current key press.

x% The current column (0 - 7).

y% The current row (0 - 7).

The program

10 REM Programmers' ASCII Chart

20 :

30 ON ERROR GOTO 290

40 PROCsetup: REPEAT: PROCkeys: UNTIL FALSE

50 :

60 CLS

70 DEF PROCsetup

80 page%=0 : PROCpage

90 ENDPROC

100 :

110 DEF PROCkeys

120 REPEAT : g%=INKEY (0) : UNTIL g%=240 OR g%+241

130 IF g%=240 AND page%>0 page%=page%-l : PROCpage : ENDPROC

140 IF g%=241 AND page%<3 page%=page%+l : PROCpage : ENDPROC

150 ENDPROC

160 :

170 DEF PROCpage

180 FOR x%=0 TO 7

190 FOR y%=0 TO 7

200 char%=page%*64+ (x%*8+y%)

210 dec$=STR$ (char%) : dec$=STRING$ (3-LEN (dec$) , CHR$ (32))+dec$

220 hex$=STR$ (char%) :hex$="£"+STRING$ (2-LEN (hex$) , CHR$ (48)) +hex$

230 PRINT TAB(x%*10,y%) ; dec$; SPC (1) ;

240 PRINT CHR$ (27) ;CHR$ (char%) ;CHR$ (18) ;SPC(1) ;hex$;CHR$ (179) ;

250 NEXT

260 NEXT

270 ENDPROC

280 :

2 90 ON ERROR GOTO 310

300 VDU 26: CLS: IF ERR=17 THEN CHAIN "AUTO"

310 REPORT: PRINT" at line ";ERL

320 PRINT :PRINT"Press [Function] [X] for Notepad Main Menu"

26 The Amstrad Notepad

COOKIE.BAS

Random Proverb Generator

•■I

Press SPACE For Further en I i ghtenrnent , . .

fine i ent Ch i nese proverb say :

'Golden ore the symbols of knowledge'^

COOKIE.BAS, with one of its pearls of wisdom

Playing with words is one of the first thing a Basic programmer learns to do. The

program Eliza, which managed successfully to imitate the couch-side manner of a

friendly psychiatrist is probably the most famous example of this sort of idea.

COOKIE.BAS is based on the same principle of stringing a selection of carefully

chosen words together to create a meaningful sentence - in this case, a plausible

sounding proverb of the type that you might find inside a Chinese fortune cookie.

You can waste many a mirthful hour playing with Cookie, but it's worth pointing out

that the principles used do (believe it or not) have a serious application from the

programmer's point of view. Not only are Basic's powerful string-slicing functions

demonstrated - albeit to a very small degree - but some of the basic rules of

simulating natural language on a computer are presented in an approachable fashion.

Feel free to extend the scope of this program, even if it's only by expanding the

vocabulary in order to reduce the chances of repetition from proverb to proverb - a

chance that is at present fairly high, despite the provision of 30 different subjects,

objects and adjectives which together make the chance of the same proverb appearing

twice in a row some 27,000 to 1.

USING THE PROGRAM

Type in the listing and save it as COOKIE.BAS before trying it out. Then type:

and the screen will clear to show a shadowed card in the centre, and the face of an

oriental gentleman being drawn on the left of the card.

When the drawing is complete, a proverb will immediately be printed in the centre of

the card in bold type enclosed between quotation marks. Cookie will then invite you

to press [Space] for some further enlightenment, which you may do until you have

had enough insights to last you a lifetime. At this point press [Stop], and you will

RUN

Advanced User Guide 27

(probably mercifully) leave the Chinese gentleman and his profound sayings for

another day...

HOW IT WORKS

30 Points the Basic error handler to Cookie's own error handling

routine at line 980.

40 Calls PROCsetup to create and fill the word arrays, and then sits

in an endless REPEAT...UNTIL loop calling PROCproverb.

70 Resets all windows, clears the screen, reads in the absolute

number of words in each array (the arrays must all contain the

same number of words) and assembles the screen loader.

80 Dimensions the three word arrays to max%-l, as the zeroeth

element of each will be used.

90-110 Read in max% number of words into the three arrays.

120 Calls PROCcard to display the card, picture and static text, and

sets up a text window large enough to hold the largest proverb

possible.

160 Loads previously saved screen file from disk, if it exists.

170 Draws the outline of the card.

180 Draws the card shadow.

190 Begins the picture drawing FOR...NEXT loops. y% is controlled

by the outer loop, within which a single string (s$) is read from

the picture DATA. x% is controlled by the inner loop, within

which each character of s$ is extracted with MID$(). If the

character is a 1 , PROCdot is called to plot a single point within

the picture at the current coordinates of x% and y% (plus the

correct offsets).

200 Ends the x% and y% loops and prints the first static message.

210 Prints the second static message.

250 Plots a point within the growing picture at the current

coordinates of x% and y%. x% has a constant added to ensure

that the picture is plotted within the card, and y% is subtracted

from a different constant to ensure that the picture is both the

right way up and the correct distance from the card edge.

280 Clears the proverb window and picks a random adjective (adj$),

object (obj$) and subject (sub$) by generating three random

numbers, each of which is used to index into the relevant word

array.

290 Constructs the finished proverb (p$) by joining adj$ to objS with

one static string, and objS to sub$ with another. Quotes are

joined to p$ at both ends.

28 The Amstrad Notepad

300

310

330

350-380

400-430

450^80

500-970

990

1000

1010

1020

1050

1060-1100

1120-1130

1190

1200-1230

1240

1250-1260

1270

1280-1300

1310

1350-1360

1370-1400

1440-1470

Prints the proverb p$ bold and centred within the current

window, by starting printing at half the window width minus half

the length of p$.

Repeatedly fetches key presses until [Space] has been pressed,

before exiting the procedure.

Stores the maximum size of the three arrays.

Store 30 adjectives.

Store 30 objects.

Store 30 subjects.

Store 48 picture lines, each of 48 pixels.

Points the Basic error handler to a full error report in the event

of a further error occurring while attempting to run AUTO. This

is in case AUTO isn't present on your Notepad.

Attempts to run the menu program AUTO if the error was

generated by pressing the [Stop] key.

If the error was caused by something else, or if AUTO isn't on

your Notepad, a full error report is displayed.

After the error report the Notepad will be left in BBC Basic, so

this message is displayed to remind users of how to return to the

Notepad main menu.

Start of procedure that assembles the screen saver/loader, which

saves a copy of the screen after everything is drawn the first

time, and loads it in each time thereafter.

Define the five NCI00 jump block routines to be used.

Begin the two-pass assembly and set P% (the assembly

destination pointer) to the start of the previously dimensioned

Pages the 16K of RAM with the video memory in at address

&C000.

Copy the contents of video RAM down to &8000.

Puts back the video RAM.

Open a file for saving the screen data.

Returns if unable to open the file.

Save &1000 bytes from &8000 to the file.

Closes the file and exit.

Open a file for reading.

If unable to open the file set the contents of flag to zero and

return.

Read the &1000 bytes to location &8000 then close the file.

Advanced User Guide 29

1480-1530 Map the video RAM 16K block into &C000, copy the &1000

bytes from location &8000 up to &F000 and then put back the

screen RAM.

1540-1560 To indicate successful loading, set the contents of flag to 1 then

return.

1600-1610 Save the current status of the bank switcher for block 4

(&C000-&FFFF).

1620-1650 Map the video RAM into main RAM then return.

1690-1700 Restore the state of the bank 4 bank switcher and its copy at

&B003.

1760 The file name COOKIE.SCN.

1800 The flag to indicate successful file loading.

1840 Temporary storage of the state of the bank switcher.

1890-1920 A function to allocate memory for a string and store the string in

that memory.

1940-1970 A function to allocate space for a byte of data and store the data

Functions and procedures

in that location.

PROCsetup Dimensions the three word arrays, reads in all the words, calls

PROCcard to draw the card, the Chinese gentleman and the

static text messages, and sets up a text window in which to print

the proverbs.

PROCcard Prints the outline of the card, draws the picture and prints the

static text messages.

PROCdot Prints a dot from the picture at the current coordinates - called

by PROCcard.

PROCproverb Constructs and prints a new proverb.

Main variables and arrays

adj$() Holds all the adjectives.

obj$0 Holds all the subjects.

sub$() Holds all the objects.

adj$ A randomly selected adjective picked from adj$().

obj$ A randomly selected object picked from obj$().

sub$ A randomly selected subject picked from sub$.

max% The maximum number of adjectives, subjects and objects which

are to be read from DATA and manipulated.

s$ The current line of the picture while it is being printed.

30 The Amstrad Notepad

x%

y%

p$

The current column of the picture being printed.

The current row of the picture being printed.

The proverb under construction and eventually printed.

The program

10 REM Fortune Cookie

20 :

30 ON ERROR GOTO 990

40 PROCsetup: REPEAT :PROCproverb: UNTIL 0

50 :

60 DEF PROCsetup

70 VDU 26 :CLS: RESTORE: READ max%:DIM Z% £80 :PROCassemble

80 DIM adj$(max%-l) , obj$ (max%-l) , sub$ (max%-l)

90 FOR w%=0 TO max%-l:READ adj$ (w%) : NEXT

100 FOR w%=0 TO max%-l:READ obj$ (w%) :NEXT

110 FOR w%=0 TO max%-l:READ sub$ (w%) : NEXT

120 PROCcard:VDU 28,24,3,68,3

130 ENDPROC

140 :

150 DEF PROCcard

160 CALL scrn_from_disk:IF ?flag=0 THEN CLS ELSE ENDPROC

170 MOVE 60,1: DRAW 419,1: DRAW 419, 63: DRAW 60, 63: DRAW 60,1

180 MOVE 61,0: DRAW 420,0: DRAW 420,62

190 FOR y%=0 TO 47:READ s$:FOR x%=0 TO 47: IF MID$ (s$, x%+l , 1) ="1 "

PROCdot

200 NEXT : NEXT : PRINT TAB (32 , 1) ; "Ancient Chinese proverb say:"

210 PRINT TAB (27, 6) ; "Press SPACE for further enlightenment..."

220 CALL scrn_to_disk: ENDPROC

230 :

240 DEF PROCdot

250 PLOT 69,x%+78,56-y%:ENDPROC

260 :

270 DEF PROCproverb

280 CLS:adj$=adj$ (RND(max%-l)) : obj$=obj$ (RND (max%-

1)) : sub$=sub$ (RND (max%-l))

290 p$=CHR$ (34)+adj$+" are the "+obj$+" of "+sub$+CHR$ (34)

300 PRINT TAB(22-LEN(p$) /2, 0) ;CHR$ (17) ;p$;CHR$ (18) ;

310 REPEAT: UNTIL GET=3 2 : ENDPROC

320 :

330 DATA 30

340 :

350 DATA Subtle , Bold, Many, Rewarding, Brutal , Few, Bland, Blessed, Blind

360 DATA Cursed, Sinister , Wondrous, Vague, Deadly, Strange, Black, Golden

370 DATA Precious, Sweet , Bitter, Varied, Monstrous, Terrible, Simple, Cheap

380 DATA Tainted, Futile, Promising, Painful, Empty

390 :

400 DATA fires, pathways, penalties, temples, benefits, pleasures, sins,

symbols

410 DATA revelations, seeds, treasures, ways, workings, perils, qualities,

joys

420 DATA origins, follies, enigmas, dividends, rewards, deeds, evils , politics

430 DATA fruits, mysteries, methods, motives, crimes, desires

440 :

450 DATA the flesh, passion, hate, seduction, the soul , charity, knowledge

460 DATA the spirit , wisdom, heaven, hell , mercy, freedom, life, the

heart , destiny

dpinQu3S(]pdJUVApy IS

SV833=^nou9doj

©XquissspOOHd.330

cura

„nu3Wutbwppda^ONjoj[x][uot^ouna]sssja..XNIHd:XNIH3

IHa-'.,4*..INIHd:iH0d3H

..0MV..NIVHDN3HIZ.T=tfH331:SID=92DOA

oioi01,03Ho«aano

..ooooooooooooioooooooooiitioooooooooioooooooooooo..viva

..000000000000T000000III0000TII000000I0ooooooooooo..viva

..ooooooooooootooooiiooooooooooitooooioooooooooooo..viva

..ooooooooooootoootooooooooooooootoootoooooooooooo..viva

..ooooooooooooiooiooooooooooooooooiooioooooooooooo..viva

..000000000000T0T000000TTTTTT000000T01000000000000..viva

..O0OOOOOOOOOOIOIO0OOIIO000O0IT0OOOIOI0O00O0000OOO..viva

..OOOOOOOOOOOOOIOOOOIIIIIIIIIIITOOOOTOOOOOOOOOOOOOhviva

..oooooooooooooioootiooooooooooitoooiooooooooooooo..viva

..ooooooooooooioiooooooooooooooooooiotoooooooooooo..viva

..000000000000TO0TT0OT00000000I0OTI00IO000000000OO..VIVO

..O000O00OOO0TO0000TT0000II0O00II0000OIOO000000000..viva

..OOOOOOOOOOOIOOOOOOOOOOIOOTOOOOOOOOOOIOOOOOOOOOOOuviva

..OOOOOOOOO00IOOOOOOOOOOOOOOO00O0OO00OI0OOOOOOOOOO..viva

..OOOOOOOOOOTOOO00OOOOO000OOO0OOOO00OOOIOOOOOOOOOO..viva

..OOOOOOOOOOIOOOOO00OOOOO00OOOOOOO0OOOOIOO0OOOOOOO..viva

..0OOOOO0O0OIOOOO000IITO00O00IIT000OOO0I000OO0OOOO..viva

..0000000000T000000T0T00000000T0T000000T0000000000..viva

..000000000T0000000II0000000000TI0000000I000000000..viva

..oooooooooioooooooiooooooooooooioooooooiooooooooo..viva

..oooooooooiooooootooooooooooooooiooooooiooooooooOhviva

..OOOOOOOOOIOOOOIOOOOOO000OO00OOOOOIOOOOT0OOOOOOOO.,viva

..0OOOOOO0OIO0OOOTTIIOOOOOOO0O0IITTO0OO0T0OOOOO00O..VIVO

..OOOOOOOOOIOOOOOO0OOOOOOOOOOOO0OOOOOOOOIOOOOOOOOO..viva

..IIIITTTTITITTIIITIIIIIIIITIIITIIIITIIIIIIIITIIII..VIVO

..0I00O00O00O0OOO0O00000000O0O000000000000000O0OIO..viva

..00IIIIIIIIIIIIIIIITITIIIIIITIIIIII00000000000I00..VIVO

..oootooiooo..viva

..0000IIIIIIIITTTIIIIIITIITTIIIIIII0000000000I0000..viva

..oooootooooooooooooooooooooooooooooooooooooiooooo..viva

..000000IITIIIIIIITTITIIIIIIIIIIII000000000I000000..VIVO

..oooooootooooooooooooooooooooooooooooooooiooooooo..viva

..00000000ITTIIIIIITIITIIITTTITTT00000000T00000000..Viva

..oooooooooiooooooooooooooooooooooooooooiooooooooo..viva

..0000000000IIIITTIIIIIIIIIIIIII0000000I0000000000..viva

..OOOOOOOOOOOTOOOOOOOOOOOOOOOOOOOOOOOOIOOOOOOOOOOOuviva

..000000000000IIIITTIIIIIIITIII000000T000000000000..viva

..oooooooooooooiooooooooooooooooooooiooooooooooooo..viva

..O00O000000OO00IIIIIIIIIIITII0O000IOO0OO0000OOOO0..viva

,,000000000000000100000000000000001000000000000000..viva

..0000000000000000ITTTIITTITT0000T0000000000000000..VIVO

..oooooooooooooooooiooooooooooooiooooooooooooooooo..viva

..ooooooooooooooooooiiiiiiiioootoooooooooooooooooo..viva

..oooooooooooooooooooiooooooooiooooooooooooooooooouviva

..OOOOOOOOOOO0OOOO00OOIIIIIOOIOOOOOOOOOOOOOOOOOOOO..viva

,,000000000000000000000100001000000000000000000000..viva

..ooooooooooooooooooooooiioioooooooooooooooooooooo..viva

..oooooooooooooooooooooooiiooooooooooooooooooooooo..viva

^Xf^'^xaoep'uotBt-[9J'AausVIVO

aDBad'eseasip'axtdsep'qq5fxeP'sdoq'peejfi'^snx'q^na^'q^nap'baoxVIVO

0901

0S0I

0*0X

OEOI

0201

0I0T

0001

066

086

0Z.6

096

056

0*6

0E6

026

016

006

068

088

OLQ

098

058

0*8

0E8

028

018

008

06L

OQL

OLL

09L

OSL

QVL

0£L

OZL

OTL

00L

069

089

0Z.9

099

059

0*9

0E9

029

019

009

065

085

0Z.S

095

055

0*5

ocs

025

015

005

06*

08*

pvddWNpvjtsiuyzifx

■0991
I3H0S9T

V(EI5)inO0fr9I

V(E0039)Q10E9I

L9'V<TI0391

V'(s^^s)ai0T9I

(E0035)'VCTC0091

:06SI

uxujos<Jpui*08ST

:0Z.SI

I3H09SI

I'(1H)Q1OSSI

Bsjj"ihenofrsi

;nouiosdpuiTTVDOESI

hicitozsi

ooois'33crcoisi

oooas'aacrcoosi

00085"1HCTC06frl

Ufujosd^uiTTVO08frl

esoiojOLfrT

3(OOiquxjiTtfO09*1

ooois'oaenosn

00085"IHCTCOfrU

:OEM

:OIH

I3HOOfrl

0'(IH)ai06EI

6*15"IH(TI08ET

Tiuoaj'o3T0Z.ET

uiusdoj09EI

eureuBXTj'iHCTCOSEI

_:OfrET

^sfpuiojiujos-OEEI

:03ET

asoioj<jtOIEI

3(ooiq^nojTTVO00EI

00015'03Q10631

00085"IHCTC0831

oniaaoz.3i

^nousdojTUfD0931

eureuaiTJ"IH010S3I

t^nouaosdpuiTIYD0fr3I

HICTI0E3I

00015'OHai0331

00085'aacrcoi3i

00035'IHai0031

uxujosdvaiTIYO0611

:0811

Xsxpoquaos-0Z.TT

:0911

SSYdIdO0SII

]OUT

%Z=%d0EII

3daiS3010=SSVdHOd0311

:OIII

068H5=asoiojOOTT

96835=->tooiquTj0601

3Y8S5=x=>oT<nnoi0801

ZV8a5=UTU9doj0Z.0I

Advanced User Guide 33

1670 . map_scrn_out

1680 :

1690 LD A, (state)

1700 LD (&B003) ,A

1710 OUT (&13) ,A

1720 RET

1730 :

1740 .filename

1750 :

17 60 DEFM "COOKIE. SCN" :DEFB 0

1770 :

1780 .flag

1790 :

1800 DEFB 0

1810 :

1820 .state

1830 :

1840 DEFB 0

1850]

1860 NEXT

1870 ENDPROC

DEVIL.BAS

Towers ofHanoi

MENU OF OPTIONS
Devi 1 '$ Abacus

Touers of Hanoi

5 Tiers
(S)tort a new gome
(C)hange the number oF Tiers
(P)lay the computer's solution
(R)eaa the Rules oF Ploy

"as?! §

Press the P i rst letter op any Option!

DEVIL.BAS, getting ready to start a game

Towers of Hanoi is a popular and very old game of the patience variety, where a lone

player must move a stack of rings from one of three vertical poles to another, one at a

time - but the stack is built from rings of different sizes, and at no time during the

game may any ring be placed on top of one that is smaller.

It's not hard to work out the solution, but the trick lies in completing the puzzle in the

fewest number of moves - which if you have never played the game before is a lot

harder than it sounds. In fact the minimum number of moves doubles with every ring

added to the stack (rather like the binary number system, in fact).

DEVIL.BAS adheres strictly to the standard rules. You can choose to play with any

number of rings from two to seven levels (often called tiers in this version) and if you

get stuck you can ask the computer to play the full solution for that number of tiers. It

will solve the game either at full speed (quite entertaining to watch at seven-tier level)

34 The Amstrad Notepad

or run through it one step at a time, waiting for a key press before continuing (ideal

for studying the solution).

USING THE PROGRAM

Type in the listing and save it as DEVIL.BAS before trying it out. Then type:

RUN

and the main screen will appear. The number of rings or tiers is initially set to five, as

shown in the box to the right, but you can change this from the Main Menu at any

time by pressing [C], followed by the number you would like to play with, and finally

[Return].

To play the game with the current number of tiers, press [S] from the main menu.

The centre area of the display will clear to show a stack of rings on the left, beneath

the number 1. At the top of the screen in the centre is the number 2, and at the

top-right of the are is the number 3. These numbers represent the three poles, which

are not themselves drawn for reasons of clarity.

The game is played by first pressing the number of the pole from which you would

like to move a ring — the start pole, followed by the number of the pole you want to

move it to - the end pole. For example, if you wanted to move a ring from pole 1 to

pole 2, just push [1] followed by [2].

There is no need to press [Return] to enter your choice - the keys are read instantly

as you push them. Devil will not allow illegal moves to take place. An illegal move is

considered to be any one of the following:

□ Attempting to select a start pole that is empty

□ Attempting to select an end pole whose top-most ring is smaller than the ring to be

moved

□ Attempting to select a ring that cannot possibly be moved because the other two

poles top-most rings are both smaller in diameter

□ Attempting to move a ring to the pole it is on.

The game continues until you either complete the puzzle, in which case you will be

heartily congratulated (well, sort of), or you press [Stop], which will immediately exit

the program, or you press [Q], which will prompt the computer to ask you if you are

sure you want to abandon the game. If you are, press [Y] to return to the main menu

- otherwise, press [N] and the game will resume.

During play the box on the right hand side of the screen always shows the number of

the current move and also the highest score for this level. Changing the number of

tiers resets the high score and, of course, starting a new game resets the move

Advanced User Guide 35

counter. All prompts during a game (or an automatic solution) are displayed on the

bottom line of this box which normally shows either From? or To?, depending on

whether you next need to select a start or end pole.

If you can't solve a particular level you might like to watch the computer doing it for

you in the shortest possible number of moves. To do this press [P] from the main

menu to see the automatic solution menu. You are given the choice of either

automatic playback (where the entire solution whips past at the speed of light), or

manual playback (where the computer politely waits for you to press a key after each

move).

Press [A] for automatic or [M] for manual, and the solution will unfold before your

very eyes. In both automatic and manual modes you can abort the solution by

pressing [Q], exactly as if it were a normal game being played, and you will be

dropped back at the Main Menu.

If you want to review the rules at any time, press [R] from the main menu. When

you've finished reading, press [Space] to return to the menu.

HOW IT WORKS

30 Points the Basic error handler to Devil's own error handling

routine at line 2510.

Resets all windows, clears the screen and calls PROCsetup to

initialise the program.

Calls the Main Menu inside an infinite REPEAT...UNTIL loop

until [Stop] is pressed.

Dimensions the arrays and assembles the screen saver/loader.

Sets the default number of tiers to five.

Create seven 32-character width strings containing different size

rings made from CHR$(223), and place them in tier$, smallest

first.

Loads previously saved screen file from disk, if it exists.

Draw screen boxes and print the left-hand box static strings.

Draw the four Chinese characters held in DATA lines.

Print the right-hand box static strings.

Set up the main window and print the Main Menu.

Read keyboard until one of the highlighted menu option letters is

pressed.

Call the appropriate procedure depending on the key just

pressed.

Ask user for the new number of tiers, and wait until a valid

number between 2 to 7 inclusive is entered.

40

50

90

100

110-120

130

140-170

180-190

200-220

260-320

330-340

350-380

420-450

36 The Amstrad Notepad

460

470

510

520

530

540

550

580-600

630-650

680

690

730-790

820

850

880

910

920

930

940

Prints the new number of tiers in the right-hand status box.

Resets the move counter and the high score, and prints these in

the status box.

Starts the main game REPEAT...UNTIL loop and repeatedly

puts the result of FNmove into result%.

If result% equals FALSE then [Q] was pressed at some point

during the move, and so calls FNquit to make sure the user

wants to quit. If FNquit returns TRUE then forces an exit from

the REPEAT...UNTIL loop and returns from the procedure.

[Q] wasn't pressed, so repeats the loop until won% equals

TRUE. Then checks to see if the high score (hi%) is now higher

than the number of moves just made (sc%), and if so sets hi% to

SC%.

Prints high score and congratulations message.

Waits for [Space] key before returning from procedure.

Check poles 2 and 3 to see if a complete stack has been built by

comparing stack%(pole) with tiers%. If equal, return TRUE. If

not, return FALSE.

Print a Quit (YIN) prompt and return TRUE if [Y] is pressed or

FALSE if [N] is pressed.

Executes a FOR...NEXT loop to draw the initial stack on pole 1,

to the height of tiers%.

Prints the pole numbers.

Display a the rules and wait for [Space] before returning.

Defines a text window for the main playing area.

Defines a text window to hold the score, high score and current

number of tiers.

Defines a text window for the prompts issued when a game is

under way.

Clears the prompt window and prints From?, signalling that a

start pole is to be selected.

Calls FNkey inside a REPEAT...UNTIL loop to obtain the start

pole, returning FALSE if FNkey returns FALSE ([Q] was

pressed).

Repeats the loop unless FNlegal_start returns TRUE, in which

case the start pole number is printed next to the From? message,

and the word To? is added on the end to signal that an end pole

is to be selected.

Calls FNkey inside a REPEAT...UNTIL loop to obtain the end

Advanced User Guide 37

pole, returning FALSE if FNkey returns FALSE ([Q] was

pressed).

950 Repeats the loop unless FNlegal_end returns TRUE.

960 Prints the end pole number next to the To? message, removes the

start ring with PROCget(start%), and puts it on the new pole

with PROCput(end%).

970 Increments and prints the move counter, and returns TRUE.

1000-1010 Repeatedly scan the keyboard until any of [1], [2], [3] or [Q] is

pressed (g% AND 223 forces the key into upper case to save

two separate checks on its ASCII code).

1020 If [Q] was pressed, returns FALSE.

1030 Returns the ASCII value of the key minus 48, to bring it into the

range 1 to 3.

1060 Returns FALSE if start pole is empty.

1070-1090 Set legal% to FALSE and check the other two poles to see if the

start ring can legally be moved to either. If so, set legal% to

TRUE.

1 100 Returns the value of legal%.

1130 Returns FALSE if the end pole selected was in fact the start

pole.

1 140 Returns FALSE if the start ring is larger than the top-most ring

on the end pole.

1150 Returns TRUE, because no problem was found with the choice

of end pole.

1180 Returns 99 if the pole passed in p% is empty.

1 190 Otherwise returns the number of the top-most ring on pole p%,

as held in pole%(p%,height), where height is given by

level%(p%).

1220 Removes a ring from the pole passed in p% by overprinting it

with 32 spaces.

1230 Calls FNtop with p% to get the number of the top-most ring, and

stores it in store% before decrementing the height of the pole

held in level%(p%).

1270 Increments the height of the pole held in level%(p%) and places

the ring number held in store% on the top of the pole.

1280 Places the new ring (still held in store%) on the pole passed in

p% by fetching its image from tier$().

1320 Prints the current move counter.

1350 Prints the current high score.

1380 Sets up the left-hand pole to hold the number of each ring up to

38 The Amstrad Notepad

tiers%. The largest must be at the bottom - pole%(l,tiers%) -

and the smallest at the top - pole%(l,l) - and so the rings are

placed in reverse order. Sets the height of the first stack as held

in level%(l) to tiers%.

1390 Clears the ring numbers on the other two poles to zero and sets

their heights to zero.

1400 Draws the new stack and resets the move counter.

1430 Sets x% and y% to point to the top left graphics location of the

Chinese character about to be printed, by multiplying the passed

text coordinates. Also ensures the character is not inverted by

subtracting the resulting Y coordinate from the top-most point on

the screen.

1440 Starts the outer row loop, reading in each line of the character

from DATA.

1450 Starts the inner column loop, extracting each character from the

line just read.

1460 Plots a point at the current X and Y graphics coordinates if the

character just extracted is a 1.

1470-1480 End the inner and outer loop before returning.

1510-1540 Display the automatic solution menu and prompt for a key press.

1550 Reads the keyboard until [A], [M] or [Q] is pressed.

1560 Returns if [Q] was pressed, otherwise sets ss% (single-step

mode) to TRUE if [M] was pressed or FALSE if [A] was

pressed.

1570 Sets up and draws the starting position, clears the status window

and turns on bold type.

1580 Displays the selected playback mode according to the value of

ss%.

1590 Turns bold off, activates the main window, resets the DATA

pointer to the start of the solution, clears quit% and begins the

playback REPEAT...UNTIL loop.

1600 Calls PROCwait if in single-step mode to wait for a key press

before continuing, otherwise the keyboard is checked on the fly

with INKEYS(O), to see if [Q] has been pressed. If so, sets quit%

to TRUE.

1610 Reads each move of the solution into start% and end%, which

allows simulation of a normal game by calling PROCget(start%)

and PROCput(end%) immediately.

1620 Increments and prints the move counter and loops back to the

REPEAT, until either quit% equals TRUE or the solution has

been completed.

Advanced User Guide 39

1630 Activates the status window and returns from the procedure if

quit% equals TRUE.

1640-1650 Print a Press SPACE prompt and wait until [Space] is pressed

before returning from the procedure.

1680 Waits for [Space] or [Q] to be pressed, setting quit% to TRUE if

[Q] was pressed, or FALSE if not.

1720-2380 Hold the data for four Chinese characters which spell (roughly

translated) Devil Abacus.

2400-2500 Hold the complete solution for up to seven rings, as pairs of start

and end pole movements.

2520 Points the Basic error handler to a full error report in the event

of a further error occurring while attempting to run AUTO. This

is in case AUTO isn't present on your Notepad.

2530 Attempts to run the menu program AUTO if the error was

generated by pressing the [Stop] key.

2540 If the error was caused by something else, or if AUTO isn't on

your Notepad, a full error report is displayed.

2550 After the error report the Notepad will be left in BBC Basic, so

this message is displayed to remind users of how to return to the

Notepad main menu.

2580 Start of procedure that assembles the screen saver/loader, which

saves a copy of the screen after everything is drawn the first

time, and loads it in each time thereafter.

2590-2630 Define the five NCI00 jumpblock routines to be used.

2650-2660 Begin the two-pass assembly and set P% (the assembly

destination pointer) to the start of the previously dimensioned

Z%.

2720 Pages the 16K of RAM with the video memory in at address

&C000.

2730-2760 Copy the contents of video RAM down to &8000.

2770 Puts back the video RAM.

2780-2790 Open a file for saving the screen data.

2800 Returns if unable to open the file.

2810-2830 Save &1000 bytes from &8000 to the file.

2840 Closes the file and exit.

2880-2890 Open a file for reading.

2900-2930 If unable to open the file, set the contents of flag to zero and

return.

2970-3000 Read the &1000 bytes to location &8000 then close the file.

40 The Amstrad Notepad

3010-3060 Map the video RAM 16K block into &C000, copy the &1000

bytes from location &8000 up to &F000 and then put back the

screen RAM.

3070-3090 To indicate successful loading, set the contents of flag to 1 then

return.

3130-3140 Save the current status of the bank switcher for block 4

(&C000-&FFFF).

3150-3180 Map the video RAM into main RAM then return.

3220-3230 Restore the state of the bank 4 bank switcher and its copy at

&B003.

3290 The file name DEVIL.SCN.

3330 The flag to indicate successful file loading.

3370 Temporary storage of the state of the bank switcher.

3420-3450 A function to allocate memory for a string and store the string in

that memory.

3470-3500 A function to allocate space for a byte of data and store the data

in that location.

Functions and

PROCsetup

PROCmenu

PROCtiers

PROCplay

PROCdrawstack

PROCrules

PROCwinl

PROCwin2

PROCwin3

PROCgetO

PROCputO

PROCscore

procedures

Sets up the main variables and draws the playing screen. Calls

PROCchinese four times to display the Chinese characters. Fills

tier$ with seven rings of decreasing diameter built from

CHR$(223).

Displays the Main Menu and calls the appropriate procedure

according to the key pressed.

Allows user to change the current number of tiers.

Plays the game.

Draws the playing area ready for start of play or auto-solve, with

a stack of rings (of the currently selected number) on the left,

and the pole numbers on the top line.

Displays the rules.

Defines a text window for the main playing area.

Defines a text window for the status box (where the scores and

current number of tiers are displayed).

Defines a text window for the prompt box (where prompts are

displayed during a game).

Takes a ring of the named stack and stores its number.

Places the stored ring on the named stack.

Updates the current move counter.

Advanced User Guide 41

PROChiscore

PROCprepare

PROCchinese()

PROCsolve

PROCwait

FNwin

FNquit

FNmovc

FNkey

FNlegal_start

FNlegal_end

FNtopQ

Updates the fewest moves counter.

Prepares program for a new game or automatic solution by

resetting the ring stacks and the moves counter.

Prints a Chinese character at the passed text coordinates.

Plays the complete solution for the current number of tiers, in

automatic or single-step mode.

Waits for [Space] or [Q] to be pressed, setting quit% to TRUE if

[Q] was pressed, or FALSE if not.

Sets won% to TRUE if any stack contains all the rings.

Prints a Quit (YIN) prompt and returns TRUE if [Y] is pressed or

FALSE if [N] is pressed.

Plays a full move, returning FALSE if [Q] was pressed instead

of a start or end pole number.

Waits for [1], [2], [3], or [Q] to be pressed, returning FALSE if

the latter, or TRUE if any of the former.

Returns FALSE if the selected start pole is illegal for any reason.

Returns FALSE if the selected end pole is illegal for any reason.

Returns the number of the ring at the top of the named stack (1

to 7), or 99 if the stack is empty.

Main variables and arrays

tier$()

pole%0

level%()

start%

end%

sc%

hi%

quit%

g%

The program

Holds strings representing pictures of all seven rings. tier$(l) is

the smallest, tier$(7) the largest.

Holds the current position of rings on each pole.

Holds the current number of rings held on each pole (1 to 7)

The start pole number (1 to 3).

The end pole number (1 to 3).

The move counter.

The fewest moves managed so far for the current level.

Single-step flag, holds TRUE if user selected manual playback

of the solution, otherwise holds FALSE.

Holds TRUE if [Q] was pressed during a game or automatic

solution.

Used throughout the program to hold key presses.

10 REM Devil's Abacus

20 :

30 ON ERROR GOTO 2520

40 VDU 26 :CLS:PROCsetup

42 The Amstrad Notepad

50 REPEAT :PROCmenu: UNTIL FALSE

60 END

70 :

80 DEF PROCsetup

90 DIM tier$ (7) ,pole% (3, 7) , level% (3) , Z% &80 : PROCassemble

100 tiers%=5:sc%=0:hi%=0

110 FOR t%=l TO 7:pad$=STRING$ (7-t%,CHR$ (32))

120 tier$ (t%) =pad$+STRING$ (t%*2, CHR$ (223)) +pad$: NEXT

130 CALL scrn_from_disk.:IF ?flag=0 THEN CLS ELSE GOTO 200

140 MOVE 0,0:DRAW 100,0:DRAW 100,63:DRAW 0,63:DRAW 0,0

150 MOVE 380,0:DRAW 479,0:DRAW 479,63:DRAW 380,63:DRAW 380,0

160 PRINT TAB (1,1);CHR$ (17); "Devil's Abacus"; CHR$ (18) ;

170 PRINT TAB(1, 6) ;CHR$ (17) ; "Towers of Hanoi ";CHR$ (18)

180 RESTORE 1720 : PROCchinese (3 , 3) : RESTORE 1890 :PROCchinese (6, 3)

190 RESTORE 2060 : PROCchinese (9, 3) : RESTORE 2230 : PROCchinese (12, 3)

200 PROCwin2: CLS: PRINT TAB(4,0) ;CHR$ (17) ;tiers%;CHR$ (32) ; "Tiers";

CHR$ (18)

210 PRINT TAB (3, 2) ; "Moves: ";sc%

220 PRINT TAB (4, 3) ; "Best : ";hi%

230 CALL scrn_to_disk: ENDPROC

240 :

250 DEF PROCmenu

260 PROCwinl:CLS

270 PRINT TAB (15,0) ;CHR$(17) ; "MENU OF OPTIONS"; CHR$ (18)

280 PRINT TAB(8,2) ; :VDU 40, 17, 83, 18, 41 :PRINT"tart a new game"

290 PRINT TAB (8, 3) ; :VDU 40 , 17, 67 , 18 , 41 : PRINT"hange the number of Tiers"

300 PRINT TAB (8, 4) ; :VDU 40, 17, 80, 18, 41 :PRINT"lay the computer's

solution"

310 PRINT TAB(8,5) ; :VDU 40, 17, 82, 18, 41:PRINT"ead the Rules of Play"

320 PRINT TAB (4, 7) ; "Press the first letter of any Option";

330 REPEAT : g%=GET AND 223

340 UNTIL g%=83 OR g%=67 OR g%=80 OR g%=82

350 IF g%=83 PROCplay :ENDPROC

360 IF g%=67 PROCtiers : ENDPROC

370 IF g%=80 PROCsolve: ENDPROC

380 IF g%=82 PROCrules : ENDPROC

390 ENDPROC

400 :

410 DEF PROCtiers

420 CLS:PRINT TAB (13 , 2) ; CHR$ (17) ; "SET NUMBER OF TIERS" ; CHR$ (18)

430 PRINT TAB(2, 6) ; "Minumum Moves: 2 Tiers = 3, 7 Tiers = 127";

440 REPEAT:PRINT TAB (11 , 4) ; "How many Tiers (2-7) ";

450 INPUT tiers%: UNTIL tiers%>=2 AND tiers%<=7

460 PROCwin2: PRINT TAB(4, 0) ;CHR$ (17) ; tiers%;CHR$ (18)

470 sc%=0 : hi%=0 : PROCscore : PROChiscore : ENDPROC

480 :

490 DEF PROCplay

500 PROCprepare: PROCscore

510 REPEAT :result%=FNmove

520 IF result%=FALSE IF FNquit UNTIL TRUE: ENDPROC

530 UNTIL FNwin:IF sc%<hi% OR hi%=0 hi%=sc%

540 PROChiscore :PROCwin3: CLS: PRINT SPC (3) ; CHR$ (17) ; "Well

Done! ";CHR$ (18) ;

550 REPEAT: UNTIL GET=32 : CLS : ENDPROC

560 :

570 DEF FNwin

580 won%=FALSE : FOR p%=2 TO 3

590 IF level%(p%)=tiers% won%=TRUE

600 NEXT :=won%

610 :

Advanced User Guide 43

620 DEF FNquit

630 PROCwin3 : CLS : PRINT SPC (2) ; CHR$ (17) ; "Quit (Y/N) ?";CHR$ (18) ;

640 REPEAT : g%=GET AND 223: UNTIL g%=89 OR g%=78

650 CLS: IF g%=89 THEN = TRUE ELSE = FALSE

660 :

670 DEF PROCdrawstack: PROCwinl: CLS

680 FOR t%=l TO tiers%:PRINT TAB (0, 8-t%) ; tier$ (pole% (1, t%)) ; :NEXT

690 PRINT TAB (6, 0) ; "1"; TAB (21, 0) ; "2"; TAB (36, 0) ; "3"

700 ENDPROC

710 :

720 DEF PROCrules

730 CLS:PRINT TAB (20 , 0) ; CHR$ (17) ; "RULES " ; CHR$ (18) '

740 PRINT"The object of Devil's Abacus is to move the"

750 PRINT"entire tower to any empty position, tier by"

760 PRINT "tier, in as few moves as possible. However, "

770 PRINT"you can't put larger tiers on smaller ones."

780 PRINT TAB (10, 7) ; "Press SPACE for the Menu";

790 REPEAT: UNTIL GET=32 : ENDPROC

800 :

810 DEF PROCwinl

820 VDU 28, 18, 7, 62, 0: ENDPROC

830 :

840 DEF PROCwin2

850 VDU 28, 64, 5, 78,1: ENDPROC

860 :

870 DEF PROCwin3

880 VDU 28, 64, 6, 78, 6:ENDPROC

890 :

900 DEF FNmove

910 PROCwin3:CLS:VDU 17:PRINT TAB (1, 0) ; "From ";

920 REPEAT : start%=FNkey: IF start%=FALSE UNTIL TRUE: VDU 18:=FALSE

930 UNTIL FNlegal_start :VDU start%+48 : PRINT TAB (10 , 0) ; "To : ";

940 REPEAT :end%=FNkey: IF end%=FALSE UNTIL TRUE: VDU 18:=FALSE

950 UNTIL FNlegal_end:VDU 18

960 VDU end%+4 8: PROCwinl :PROCget (start%) :PROCput (end%)

970 sc%=sc%+l:PROCscore:=TRUE

980 :

990 DEF FNkey

1000 REPEAT : g%=GET

1010 UNTIL (g%>=49 AND g%<=51) OR (g% AND 223) =81

1020 IF (g% AND 223) =81 THEN = FALSE

1030 =g%-48

1040 :

1050 DEF FNlegal_start

1060 IF level% (start%)=0 THEN =FALSE

1070 legal%=FALSE:FOR p%=l TO 3

1080 IF p%Ostart% IF FNtop (start%) <FNtop (p%) legal%=TRUE

1090 NEXT

1100 =legal%

1110 :

1120 DEF FNlegal_end

1130 IF start%=end% THEN =FALSE

1140 IF FNtop(start%)>FNtop(end%) THEN =FALSE

1150 =TRUE

1160 :

1170 DEF FNtop (p%)

1180 IF level%(p%)=0 THEN = 99

1190 =pole% (p%, level% (p%))

1200 :

1210 DEF PROCget(p%)

..OIIITTIIIITTIIIO..VIVO0081

..oiiooooiiooooiio..viva06Z.1

..oiiooooiiooooiTO..viva08Z.1

..OTTIIIIIIIIIIIIO..VIVOOLLT

..0II0000TI0000TI0..VIVO09Z.I

..oiiooooiiooooiio..vivaosz.i

..oiiiiiiiiiiiiiio..vivaofrz.i

..0000000010000000..vivaoez.i

..0000000110000000..vivaozz.i

T#..ITAaa..JS43«J«qOessujqoW3H0IZ.I

:00Z.I

OOHddNa0691

%3xnbHOZE=%TUltto:(I8=%T)=%3Tnb:(0)a3XNI=%T:IV333H0891

3T*MDOHa:aaaoz.91

:0991

00HaaNa:siD:2E=ia3nitin:ivaaanos9i

•'(81)$HHO'..aDVctSsssaa,,.'(/.x)$HHO-'(Z)DdSIMIH30fr9I

ooaaaNa%ijnbai:sid:Eux/ooHa0E9i

HOI-%saaT^v2=%osuiNfl:IUT*OOHd:aioosooHd:I+%os=%os0Z9T

(%pu9)^ndDOHa:^sBooHa:%pu»'%^J«^s0V3H0191

anni=%^Tnbi8=%Tii-zzzonv(o)xaxNi=%Tasia3T«*Dona%«sai0091

ivaaaa:asiva=%^T"i>:o=awii:oofr2aHoisaa:iuTA3oaa:8inaA06SI

.'..^o^qABXa

o^nif,,.'(l)3dSINIHd.'..da^sai^uTS..-'(Z)03SINIHa%ss&T08SI

Z.InOA:S70:EUTAOOaa:e"d®3<iDOaa0LSI

3STva=%ssasiaanai=%ssaiasiaooaaaNaI8=%6ai0991

I8=%6HOLL=%*>HOS9=%£HIW^EZZONV133=%^:IVadSHOSSI

.'„apowIPnuPWutsbaouiaOVaS-5(OBq^Pids^ttiB■'(9'0)HVIINIHa0*SI

•'..c^oBqABidIHnuH„iNIHa:ifr'8I'Z.Z.'Z.I'0fr'2EO.OA0E9I

oT^^»o^11imHa:ifr'8i'S9'lz'o*ooa:(fr's)aviiNiaaozsi

(8i)$hho-..Nonmoss,HainawooAvna.,■(z.i)$hhd-'(z'oi)aviitiiHa^iooisi

©ATosoonaaaaoosi

:06M

DOHdaNS08tI

ixatrixaNOLVZ

(!-%•*)(i-%3)+%x'69ionai=%<Jai09H

((x'%o'$a)$aiW)1VA=%d:9l01I=%oH03OSfrl

$aavaa:9i01i=%jhojofru

8*%moj-^9=%A:9*%too=%xOEM

(%Moa'%too)©seu-cqoDOHaaaaOZH

:OTH

OOHaaNa:0=%os:xoH^SMBap30Haoon

IX3N:0=(%<J)%I9A9i:iX3N:0=(%^'%d)%eiod:/.oiI=%3H0a=E01Z=%<*H0306EI

%saeT^=(x)%iaAei:ixaN:%^-I+%sJaT^=(%^'l)%»Ioot:%8JBT^01I=%3HOd08EI

aapdeadoonaaaa0Z.EI

:09EI

ooaaaNa:(s)Das-'%m-(E'oi)aviitnaa:zuT*ooaaosei

a^oosxqooHdaaaOfrEI

:OEEI

OOHaaiia:(2)OaS'%os.'(2'oi)HVIINIHa:SUT*DOHaOZEI

ajoosooaaaaaoiei

:00EI

OOHddNH06ZI

.'(%wo;s)$J8f;.'((%d)%xeABX-8'SI-%d*gx)SVIINIH30831

%aao^s=((%d)%x9abx'%d)%axod:x+(%d)%x©Aex=(%d)%x©Aex0Z.ZI

(%d)^ndooHaaaa09zi

:OSZT

DOHdaNaofrzi

I-(%<*)%I9Aax=(%d)%x»Aax:(%d)do^Na=%»JO^sOEZI

•'((ZE)$HH0'H)$SNIHIS-'((%d)%I9Aex-8'SI-%d*Sl)aVIINIHd0ZZI

pp

dpmQddSfipaouvApy SP

£'Z'Z'£'Z'Z'£'Z'£'Z'Z'Z'Z'£'Z'£'Z'Z'£'Z'£'Z'Z'ZVIVO

U9A9Soq.dnsiaiixiBuox^nx°SW3H

..oooooooooooooooo..viva

..IIIIITTITIIIIITOnVIVO

..0I0II00TT00II000..viva

..OOOIIOOIIOOIIOOO..VIVO

..OOOIITIITIIIIIII..viva

..000II0I000000II0..viva

..oooiiooiioooitoOhviva

..oooiioooiioiiooo..viva

..ITITITITITITITTO..VIVO

..oioiioiooooiiooo..viva

..oooTiooiiooiiooo..viva

..oooiioooiioiiooo..viva

..oooxiiiiiiiiiooo..viva

..ooooooooooiooooo..viva

..ooooooooottooooo..viva

..oooooooooooooooo..viva

2#..snopqv,,Ja^OFJ^qoeseuxqsW3H

..oooooooooooooooo..viva

..oooooiooooooom..viva

..0000II00000IT000..viva

..0000II0000TT0000..VIVO

..ITITITITITITITTO..VIVO

..0T00II0000II0000..viva

..000TIIIIIIITI000..viva

..oooiiooooooiiooo..viva

..oooiiiiiiiiiiooo..viva

..oooiiooooooiiooo..viva

..oooiiiiiiiiiiooo..viva

..oooiiooooooiiooo..viva

..oooiiiiiiiiiiooo..viva

..oooiiooiioooooii..viva

..iiiiiiiiiiiiiiio..viva

..oioooiiooooiiooo..viva

X#..snopqv.,JS^OBJBqoeseuxqoW3H

..0000000110000000

..IIIIIIIIIIIIIIII

..0I00000II0000000

..oooooooiiooooooo

..ooooooiioooooooo

..0000011000000000

2#..TTAaa..JS^opjsqDasauxqoW3H

..oooooooooooooooo..viva

..iiiiiiiiooooiiio..viva

..ooooooiiooiioooo..viva

..0TTIIIII0T000000..VIVO

..oooooioiiooooooo..viva

..oooiiooiiooooooo..viva

..ooiioooiiooooiio..viva

viva u

viva u

viva
„

viva
II

viva
II

viva II

viva II

viva
.,

viva

viva
II

viva II

viva
u

viva u

viva u

viva u

viva
..

00*2

06£Z

08E2

0L£Z

09£Z

0SE2

0*£Z

0££Z

0Z£Z

0Z£Z

00£Z

oezz

0823

OLZZ

09ZZ

OSZZ

0*ZZ

0£ZZ

0222

0132

0022

0612

0812

0/.I2

0912

0SI2

0M2

0EI2

0212

0112

0012

0602

0802

0Z.02

0902

0S02

0*02

0E02

0202

0102

0002

0661

0861

0Z.6I

0961

0S6I

0*61

0E6I

0261

0161

0061

0681

0881

0Z.8I

0981

0S8I

0*81

0E8I

0281

0181

asoipjnvDOOOE

XOOiquTJTIYD066Z

00015'oaan086Z

00083"IHai0Z.6Z

:096Z

Tuiojtj-0S6Z

:0fr6Z

I3H0E63

0'(IH)0.10Z6Z

6«T3"IHai0I6Z

jwozj'oHT006Z

uxuadogpTTtfO068Z

9UIPUBITJ"IHai088Z

:0Z.8Z

Xsxpuiojiuios■098Z

:098Z

asoxojar0fr8Z

5(ooiq^nojTIYO0E8Z

00015'DE0.10Z8Z

00085"IHQ10I8Z

DNI3H008Z

^nouadojITVD06LZ

eureuBiTj"ih0108Z.Z

^noujosdpuiTIYD0Z./.Z

HICTI09Z.Z

00013'ohcrcos^z

00085'aacrco*z.z

00055"IH010EZ.Z

utuaosd«wTIYO0ZLZ

:0TZ.Z

^sxp03uios-00Z.Z

:069Z

SSYdidO0892

]0Z.9Z

%Z=%a099Z

zaaiszoio=ssvanoa0S9Z

:0fr9Z

068a5=esoxoj0E9Z

968a5=5{OOTC[UT30Z9Z

aV8a5=X3°Tq^noj0I9Z

ZV8a5=uxu»<ioj009Z

SY8H5=^nouedoj06SZ

eiquiessPOOHdaaa08SZ

:0Z.SZ

QUIZ09SZ

„nuewut*Wp^da^ONjloj[x][uoj^ouna]ssaaa»IKIHa:iNIHa0SSZ

THa'..BUTT..IKIHa:iHOdaaOfrSZ

..Oin"V..NI"tfH3N3HJiZ.T=HH3£l-SrlD-9ZHOA0ESZ

OfrSZ0103HOHH3NO0ZSZ

:0TSZ

Z'T'Z'E'T'E'Z'T'E'Z'E'T'Z'TYIVCI00SZ

Z'E'T'E'T'Z'E'Z'T'E'Z'T'Z'E'T'E'Z'T'E'Z'E'T'Z'TVIVO06frZ

E'Z'T'E'T'Z'E'Z'E'T'Z'T'Z'E'T'E'Z'T'E'Z'E'T'Z'TVIYd08frZ

Z'E'T'E'T'Z'E'Z'T'E'Z'T'Z'E'T'E'T'Z'E'Z'E'T'Z'TYIYd0L*Z

E'Z'T'E'T'Z'E'Z'T'E'Z'T'Z'E'T'E'Z'T'E'Z'E'T'Z'TVIVO09frZ

Z'E'T'E'T'Z'E'Z'T'E'Z'T'Z'E'T'E'Z'T'E'Z'E'T'Z'TVIVOOSfrZ

E'Z'T'E'T'Z'E'Z'E'T'Z'T'Z'E'T'E'Z'T'E'Z'E'T'Z'TY.LYCIOfrfrZ

E'Z'T'E'T'Z'E'Z'T'E'Z'T'Z'E'T'E'T'Z'E'Z'E'T'Z'TVIVCIOEfrZ

E'Z'T'E'T'Z'E'Z'E'T'Z'T'Z'E'T'E'Z'T'E'Z'E'T'Z'TVIVOOZfrZ

Z'E'T'E'T'Z'E'Z'T'E'Z'T'Z'E'T'E'Z'T'E'Z'E'T'Z'TVIVQOTfrZ

pvddjotfpvuisiuyai/j;9*

Advanced User Guide 47

3010 CALL map_scrn_in

3020 LD HL, £8000

3030 LD DE, fiFOOO

3040 LD BC, £1000

3050 LDIR

30 60 CALL map_scrn_out

3070 LD HL, flag

3080 LD (HL) ,1

3090 RET

3100 :

3110 . map_scrn_in

3120 :

3130 LD A, (£B003)

3140 LD (state) , A

3150 LD A, 67

3160 LD (&B003) ,A

3170 OUT (£13) ,A

3180 RET

3190 :

3200 . map_scrn_out

3210 :

3220 LD A, (state)

3230 LD (&B003) , A

3240 OUT (&13) ,A

3250 RET

3260 :

3270 .filename

3280 :

3290 DEFM "DEVIL . SCN" : DEFB 0

3300 :

3310 .flag

3320 :

3330 DEFB 0

3340 :

3350 .state

3360 :

3370 DEFB 0

3380]

3390 NEXT

3400 ENDPROC

FOOD.BAS

Food Additive Guide

hlZ4 Types Permitted Colouring

Notes: fllloued in all except Fresh produce ^ dried milk, tea or coPPee
Side Effects: Skin rashes/ i rr i tot i on
Risk Groups: Asthmatic/aspirin sensitive people

Warnings: Not recommended by the Hyperactive Children's Support Group
Press SPACE to try a new additive

I

FOODJBAS, better watch out for this additive

48 The Amstrad Notepad

In these days of increasing consumer awareness, it's surprising how little we still

know about exactly what goes into our food. The consumer laws that forced

manufacturers to put detailed ingredients on food labels still have a long way to go,

as labels often list a great number of the additives under their notorious E numbers,

rather than by name. And although you can use a specialised dictionary to look up the

plain English names of most additives, when they're listed by number only, the job is

that much harder.

FOOD.BAS is a program that tells you a great deal more about your food than the

label on the side does, and it identifies nearly every additive that has a significant

side-effect - as a worryingly large number of them do.

It manages this by recognising that every "E" number lies within a band that have

similar functions, and therefore it doesn't need to know about every additive in

existence to be able to tell you at least something about each.

However, Food maintains an extra database (currently 73 additives) of some of the

most doubtful "E" numbers presently in use within the EEC to give you more specific

information, such as the possible side-effects and the groups considered to be most

sensitive to (or even at risk from) these effects.

But when using Food please bear in mind that the information and advice given is

gleaned from the various consumer guides available, and is not guaranteed by the

program author to be 100 percent accurate, reliable or up to date. If in doubt, please

consult your doctor before panicking and removing a particular food from your diet

purely on the strength of information contained in this program.

The program is called Food for Thought as, hopefully, it will at least give you that.

USING THE PROGRAM

Type in the listing and save it as FOOD.BAS before trying it out. Type:

RUN

and immediately the program will prompt you to enter an "E" number.

Food labels sometimes show additive numbers with an "E" before them, and some

don't. It makes no difference to the program whether or not you include the letter E

in your input, but you may be interested to know that additives have not been fully

approved by the EEC unless they start with this letter (the most notorious example is

621 - good old Monosodium Glutamate).

So enter a number about which you would like some information and press [Return].

If the number doesn't lie within a recognised additive band you will be told so, and

asked to press [Space] before returning to the input prompt (note that the bands, while

at present stable, may have been added to or widened since this program was written

Advanced User Guide 49

- in which case, you won't be able to get information on some otherwise recognised

additives).

If Food recognises the number then almost straightaway it will draw an information

card, and list the details for the additive under these headings:

Type: This is the broad, generic name of the band within which the

additive lies; for example Permitted Colours.

Notes: Here a brief description of the additive's general purpose is

given, or perhaps a special note.

Side Effects: Empty, unless the additive is one of the few for which

recognised side effects exist.

Risk Groups: Empty, unless side effects exist - in which case the specific

groups of people affected are listed, if any.

Warnings: Empty, unless side effects exist - in which case any particular

warning that applies is given.

At the top left of the card, Food will print the additive number in large type on the

card tab, and if it is an additive it has specific information about it will also know

whether the additive is officially recognised by the EEC, and if so will print an "E"

before it.

When you have read the card press [Space] to return to the input screen, where you

can enter a new additive number.

HOW IT WORKS

30 Points the Basic error handler to Food's own error handling

routine at line 1950.

40 Calls PROCsetup to initialise the program, then sits in a

REPEAT...UNTIL loop taking additive numbers with

PROCinput, looking them up with PROCsearch and displaying

the information with PROCcard.

80-140 Set the number of special-case additives, dimension the arrays

and read in all data.

180-200 Clear the screen, print the program title and prompt for an

additive number.

210 Draws a small box large enough for the user's input and clears

legal% before entry and validation of a number.

220 Sets up an outer REPEAT...UNTIL loop within which a small

text window is created inside the input box. Then sets up an

inner REPEAT...UNTIL loop within which the user's input is

read into e$, exiting only when e$ is not empty. Then prints the

number in the window again in case it scrolled during input.

50 The Amstrad Notepad

230

240

250-270

280

310400

440

450

460

470

480

490

500

530-540

550-590

Sets i% to point at the first actual digit of e$, by examining the

first character to see if it is an upper case E.

Sets e% to the VALue of e$, using i% to make sure the E (if

present) is skipped. Cancels the window and validates the

number with a call to FNlegal().

Print an error message if the number is invalid, wait for [Space],

and overprint the message with spaces. This is split over three

lines for clarity.

Repeats the outer loop until the number is validated

(legal%=TRUE).

Validate the number passed in n% by checking if it falls within

the currently active additive bands. If so, set cat% to the value of

that band and return TRUE. If not, return FALSE.

Fetches the category (typeS) and the notes (note$) for the current

additive, as any legal number has at least this much information

available.

Sets the default value of effectsS, group$ and warn$ before

searching the database. Stores the additive number as a string in

numS.

Sets a found flag, f%, to FALSE, and starts a FOR...NEXT loop

(with a% as the loop counter) to search the database for a match,

using e%=enum%(a%,l). If one exists, sets the temporary

variable m% as a place-marker into the database at the position

where the match was found, sets f% to TRUE, and forces an

early (but legal) exit from the FOR...NEXT loop by setting the

loop counter a% equal to the loop limit max%.

Ends the search loop, and returns from the procedure if f% is

false. Otherwise, pulls the side effect of the additive from se$()

into effects.

Pulls the risk group from rg$ into groupS and the warning from

sc$ into warn$.

If the current database entry contains a 1 in its first subscript

then this is an official "E" number and num$ is set to E,

otherwise num$ is set to empty.

Builds the "E" number to be displayed on the card tab by

converting e% into a string and adding it to whatever num$

currently holds.

Cancel any windows and print the outline of the card.

Print the five headings and the messages obtained for the

additive.

Advanced User Guide 51

600-610

640-660

690

700

710

720

730-740

780-970

1010-1150

1190-1300

1340-1380

1420-1470

1510-1530

1510-1530

1550-1930

1950

1960

1970

Print a prompt and wait for [Space] to be pressed before

returning.

Print the additive number, num$, on the card tab in customised

characters, by first setting the X and Y origin far enough from

the tab's right edge to accommodate the whole number, and then

by calling PROCbigO for each character in the string.

Sets c% to point into the custom character array at the right

place for the character passed in c$ by subtracting 48 from its

ASCII code, or if c$ is an E, by forcing c% to equal 10.

Starts the outer row loop.

Starts the inner column loop

Extracts each character from the line in the array chr$() pointed

to by y%, and plots a point at the current X and Y graphics

coordinates if the character just extracted is a 1 .

End the inner and outer loop before returning.

List the name and notes for each additive category recognised by

the program, to be read into cat$().

List the special case database of additives to be read into

enum%(). Each entry is five numbers long, in the following

order:

Official "E" number: 1 if Yes, 0 if No

Additive number: The number proper.

Side effects: Index into se$().

Risk Groups: Index into rg$().

Warning: Index into sc$().

List the side effects to be read into se$0-

List the risk groups to be read into rg$().

List the warnings to be read into sc$().

List the bit map of the custom character 0, as read into chr$().

List the bit map of the custom character 0, as read into chr$().

List the remaining custom character bit maps, in the order 1 , 2,

3,4, 5,6, 7, 8, 9, E.

Points the Basic error handler to a full error report in the event

of a further error occurring whilst attempting to run AUTO. This

is in case AUTO isn't present on your Notepad.

Attempts to run the menu program AUTO if the error was

generated by pressing the [Stop] key.

If the error was caused by something else, or if AUTO isn't on

your Notepad, a full error report is displayed.

52 The Amstrad Notepad

1980 After the error report the Notepad will be left in BBC Basic, so

this message is displayed to remind users of how to return to the

Functions and procedures

Notepad main menu.

PROCsetup Sets up the arrays, reads in the special case additive database and

the customised numeric typeface.

PROCinput Displays program title and prompts for an additive number to be

entered.

PROCsearch Performs a search on the database to see if the additive is one

with known side effects.

PROCcard Displays the information card and the additive information.

PROCenumber Prints the full "E" number on the card tab in the customised

typeface.

PROCbig Prints a single digit or the letter E in the customised typeface.

FNlegalO Checks if the additive lies within a currently established band.

Main variables and arrays

max% The number of additives in the special case database.

cat$0 Holds the category name and notes for each currently established

band of additives.

enum%() Holds the database of additives with side effects.

se$0 Lists the side effects used by the database.

rg$0 Lists the risk groups used by the database.

sc$0 Lists the warnings used by the database.

chr$() Holds bit maps of the 1 1 customised characters (digits 0 to 9 and

the letter E).

e$ The additive number entered by the user.

num$ The additive number stripped of any E and held as a string, for

later use in PROCenumber.

legal% Whether the current additive exists.

cat% The category or band number within which the user's additive

lies.

type$ The current additive's category.

note$ The current additive's category notes.

effects The current additive's side effects (if any).

group$ The current additive's risk groups (if any).

warnS The current additive's warning (if any).

Advanced User Guide 53

The prog ram

10 REM Food for Thought

20 :

30 ON ERROR GOTO 1950

40 PROCsetup : REPEAT :PROCinput:PROCsearch:PROCcard: UNTIL 0

50 :

60 DEF PROCsetup

70 CLS:PRINT "Please wait..."

80 max%=73:DIM cat $ (9 , 1) , enum% (max% , 4) , se$ (1 1) , rg$ (4) , sc$ (5) ,

chr$ (10,13)

90 FOR n%=0 TO 9:READ cat$ (n%, 0) , cat$ (n%, 1) :NEXT

100 FOR y%=0 TO max%:FOR x%=0 TO 4:READ enum% (y%,x%) : NEXT: NEXT

110 FOR n%=0 TO 11:READ se$(n%):NEXT

120 FOR n%=0 TO 4: READ rg$(n%):NEXT

130 FOR n%=0 TO 5:READ sc$(n%):NEXT

140 FOR y%=0 TO 10:FOR x%=0 TO 13:READ chr$ (y%,x%) : NEXT: NEXT

150 ENDPROC

160 :

170 DEF PROCinput

180 CLS:PRINT TAB(22, 1) ;CHR$ (17) ; "Food for Thought";

190 PRINT " - The Additive Guide" ; CHR$ (18) : PRINT TAB (19, 3) ; CHR$ (17) ;

200 PRINT "Type in the ""E"" Number you wish to identify" ; CHR$ (18)

210 MOVE 218, 14: DRAW 266,14:DRAW 266,26:DRAW 218,26:DRAW

218,14:legal%=0

220 REPEATrVDU 28, 37, 5, 42, 5 : REPEAT : CLS : INPUT "" e$:UNTIL e$<>"":PRINT

e$;

230 IF (ASC(LEFT$ (e$,l))AND 223) =69 i%=l ELSE i%=0

240 e%=VAL (RIGHT$ (e$,LEN(e$) -i%)) :VDU 26 : legal%=FNlegal (e%)

250 IF NOT legal% PRINT TAB (19, 7) ; "Sorry, not a valid ■"£"" Number";

260 IF NOT legal% PRINT " - press SPACE";: REPEAT:UNTIL GET=32

270 IF NOT legal% PRINT TAB (19, 7) ; SPC (45) ;

280 UNTIL legal%: ENDPROC

290 :

300 DEF FNlegal(n%)

310 IF n%>=100 AND n%<=180 THEN cat%=0:=TRUE

320 IF n%>=200 AND n%<=290 THEN cat%=l:=TRUE

330 IF n%>=300 AND n%<=321 THEN cat%=2:=TRUE

340 IF n%>=322 AND n%<=495 THEN cat%=3 :=TRUE

350 IF n%>=500 AND n%<=620 THEN cat%=4:=TRUE

360 IF n%>=621 AND n%<=637 THEN cat%=5:=TRUE

370 IF n%>=900 AND n%<=904 THEN cat%=6:=TRUE

380 IF n%>=905 AND n%<=907 THEN cat%=7 :=TRUE

390 IF n%>=920 AND n%<=927 THEN cat%=8:=TRUE

400 IF n%>=1400 AND n%<=1442 THEN cat%»9:=TRUE

410 =FALSE

420 :

430 DEF PROCsearch

440 type$=cat$ (cat*, 0) :note$=cat$ (cat%, 1)

450 effect$="Not known" : group$=" ": warn$=" ": num$=STR$ (e%)

460 f%=FALSE:FOR a%=0 TO max%:IF e%=enum% (a%, 1) m%=a% : f%=TRUE : a%=max%

470 NEXT: IF NOT f% THEN ENDPROC ELSE effect$=se$ (enum% (m%, 2))

480 group$=rg$ (enum% (m%, 3)) : warn$=sc$ (enum% (m%, 4))

490 IF enum%(m%, 0)=1 num$="E" ELSE num$=" "

500 num$=num$+STR$ (e%) : ENDPROC

510 :

520 DEF PROCcard

530 VDU 26:CLS:MOVE 0,0:DRAW 479,0:DRAW 479,58

540 DRAW 50, 58: DRAW 48, 63: DRAW 0,63: DRAW 0,0:

54 The Amstrad Notepad

550 PRINT TAB(9,1) ;CHR$ (17) ; "Type: " ; CHR$ (18) ; type$

560 PRINT TAB(8,2) ;CHR$ (17) ; "Notes: " ; CHR$ (18) ; note$

570 PRINT TAB(1,3) ;CHR$ (17) ; "Side Effects: " ; CHR$ (18) ; effect$

580 PRINT TAB(2, 4) ;CHR$ (17) ; "Risk Groups: " ; CHR$ (18) ; group$

590 PRINT TAB(5,5) ;CHR$ (17) ; "Warnings: " ; CHR$ (18) ; warn$; : PROCenumber

600 PRINT TAB(23, 6) ;CHR$ (17) ; "Press SPACE to try a new additive";

CHR$ (18)

610 REPEAT: UNTIL GET=32 :ENDPROC

620 :

630 DEF PROCenumber

640 len%=LEN (num$) :xo%=43-8*len% :yo%=60 :FOR n%=l TO len%

650 PROCbig(MID$ (num$, n%, 1)) :xo%=xo%+8

660 NEXT:ENDPROC

670 :

680 DEFPROCbig(c$)

690 IF c$="E" c%=10 ELSE c%=ASC (c$) -48

700 FOR y%=0 TO 13

710 FOR x%=0 TO 7

720 IF MID$ (chr$ (c%,y%) ,x%+l(1)="1" PLOT 69, x%+xo%, yo%-y%

730 NEXT

740 NEXT:ENDPROC

750 :

760 REM Categories and Notes

770 :

780 DATA "Permitted Colouring"

7 90 DATA "Allowed in all except fresh produce, dried milk, tea or

coffee"

800 DATA "Preservative"

810 DATA "Helps ensure food safety. Avoid only when you know food is

fresh"

820 DATA "Permitted Antioxidant"

830 DATA "Prevents ready-packed foods reacting adversely with the air"

840 DATA "Emulsifier / Stabiliser"

850 DATA "Alters the handling properties of foods, especially packet

mixes"

860 DATA "Miscellaneous Additive"

870 DATA "Part of the firming, gelling and anti-caking agent group"

880 DATA "Flavour Enhancer"

890 DATA "Works by increasing saliva flow or by stimulating taste buds"

900 DATA "Glazing Agent"

910 DATA "Provides a polish to sugar confectionaries such as chewing

gum"

920 DATA "Mineral Hydrocarbon"

930 DATA "Prevents some dried foods drying out "

940 DATA "Bleaching Agent"

950 DATA "Used to bleach, mature and improve various types of flour"

960 DATA "Modified Starch"

970 DATA "Where did you buy this food? This additive is illegal in the

UK"

980 :

990 REM Additives with noticeable side effects

1000 :

1010 DATA 1,102,3,2,2,1,104,3,2,2,0,107,3,2,2,1,110,3,2,2,1,120,3,2,2

1020 DATA 1,122, 3, 2, 2, 1, 123, 3, 2, 2, 1, 124, 3, 2, 2, 1,127, 1, 2, 2, 0, 128, 3, 2, 2

1030 DATA 1,131,2,3,2,1,132,5,3,2,1,133,3,2,2,1,150,1,1,2,1,151,3,2,2

1040 DATA 0,153,0,0,5,0,154,1,1,2,0,155,3,2,2,1,200,3,0,0,1,210,7,2,0

1050 DATA 1, 211, 2, 2, 0, 1, 212, 2, 2, 0, 1, 213, 2, 2, 0, 1, 214, 2, 2, 0 , 1 , 215 , 2 , 2 , 0

1060 DATA 1, 216, 2, 2, 0, 1, 217, 2, 2, 0, 1, 218, 2, 0, 0, 1, 219, 2, 0, 0, 1, 220, 6,0,0

1070 DATA 1,221,11,2,3,1,222,11,2,0,1,223,7,2,3,1,224,11,2,3,1,226,7,2,3

1080 DATA 1,227,7,2,3,1,230,5,0,0,1,231,5,0,0,1,236,3,0,0,1,239,7,0,5

..OOTTOTOO..'..OOTTTOOO..'i.OOIITOOO..'..OOTTOOOO..'..OOIIOOOO..VIVO0Z.9T

..OOOTTTOO..'..OOTOOOTO..'..OTTOOOTT..'..OTTOOOTT..VIVO0S9T

..OIIOOOOO..'..OIIOOOOO..'..OOIOOOOO..'..OOOTTOOOu'uOOTOOOOO..VIVO0fr9I

..OIIOOOOO..'..OIIOOOII..'..OTTOOOIT..'..OOIOOOIO..'..OOOITIOO..VIVO0E9T

:0391

..OTIIIIITh'..OTTOOOTT..'..OOOOOOTO..'..OOOOOTTO..VIVO0I9T

..OOOOOTOO..'..OOOOTTOO..'..OOOIIOOO..'..OOIIOOOO..'..OIIOOOOO..VIVO0091

..OIIOOOOO..'..OIIOOOII..'..OIIOOOII..'..OOIOOOIO..'..OOOIIIOO..VIVO06SI

:08ST

..OIIIIIIO..'..OOOIIOOO..'..OOOIIOOO..'..OOOIIOOO..vivaOZ.SI

..OOOIIOOO..'..OOOIIOOO..'..OOOIIOOO..'..OOOIIOOO..'..OOOIIOOO..VIVO09SI

..OOOIIOOO..'..OOOIIOOO..'..OOOIIIIO..'..OOOIIIOO..'..OOOIIOOO..VIVO09SI

:OfrSI

..OOOTTTOO..'..OOTOOOTO..'..OTTOOOTT..'..OTTOOOTT..VIYdOEST

..OIIOOOII..'..OIIOOOII..'..OIIOOOII..'..OIIOOOII..'..OIIOOOII..viva03ST

..OTTOOOTT..'..OTTOOOTT..'..OTTOOOTT..'..OOTOOOTO..'..OOOTTTOO..VIYdOTST

:OOSI

b^tjq;a^T^<*SW3H06frT

:08frT

uua5ouTOjBDpa^oadsns..VIVOOZ.M

..sA'supxxpeaxBduix•WT*sidoedAqpspxoA?aqpxnoqs,.VIVO09frl

„snoaa6uEpA"xiBx:}ue:;odSBsox^suiq^sBAqpapxoABeqpinoqs,,VIVOOSfrT

..dnoag^joddnss,uaipxTqoOAX^opaadAHeq^Aqpepueunuooea30N..VIVOOfrfrT

„uajpxxqo

fiunoAjo/puesaxqeqjojpapua^uTspoojuxpeq.^puaad^on„VIVOOEM

..suon.,vivaOZfrl

:OIH

suox^xpuooipxoedsW3H00M

:06ET

..s^usx^Bd^a«9qao/puBAeupxx,,VIVO08ET

..saxBaaxiBq^xMsxdoe,!,,viva0Z.ET

..axdoadeAx^xsuesuxjxdsp/ox^puiq^sv..VIVO09£1

..uaapxxqofiunoAAaaA..VIVOOSEI

..suon.,VIVOOfrET

:OEEI

i[sxa3*sdnoaBoxixosdsW3H03ET

:OIEI

..sax^TnoxjjxpAJO^pjxdssH,,VIVO00EI

..A^xoxxoi,,viva0621

..s^esdnxpuje^uxaasAag,,VIVO0831

..ssoutqan^sxpoxioqe^sw.,VIVO0Z.3I

..s^ssdnaAx^saBxp/oxa^sBg,,VIVO0931

„uot;b;ijjt;xhujs^ui,,VIVO0S3I

..Bux^xuioaao/pueBOsrveN.iVIVOOfrZT

..sseuxzzxpJto/pucsaqoppsan..VIVO0E3I

„UOpE^IJIT/S9HSBIUX^fS.iVIVO0331
„suot;oe9ioxBjsxxy..VIVO0131

..ueapxxqouxA^XAX^OBaedAH..VIVO0031

„u«oux9uon„VIVO0611

:0811

s^osjxa9pxsoxjxoadsW3H0/.II

:0911

0'0'E'S36'0'0'0'6'*36'0'0'0'9'S06'0'I'O'0'SE9'0VIVOOSII

I'0'0'IE9'0'T'0'0'Z.39'0'T'0'0'E39'0'T'T'S'ZZ9'0'T'T'fr'T39'0VIVOOUT

0'0'6'SZS'0'V'fr'01'8TS'0'fr'fr'8'VIS'0'fr'fr'8'0TS'0'0'0'9'80S'0VIVOOEII

0'0'9'E0S'0'0'E'E'IEfr'T'0'E'3'0£fr'T'0'0'£'T3fr'T'O'O'E'ETfr'IVIVO0311

0'0'L'ZT»'T'S'0'9'£.0»'T'0'0'8'S8E'I'0'I'0I'S3e'I'T'I'8'IZe'TVivaOIII

T'T,8'0ZE'T'T,3'Z.'ZTE'T/T'3'Z.'TTE'T'T/Z'Z.'0T£'T'0/T'8'0Z.3'TVIVOOOTT

V'V'0'T9Z'T'T'T'Z.'ZSZ'T'T'T'S'TSZ'T'T'T'S'0SZ'T'T'T'8'6frZ'TVIVQ060T

:099T

addeotNadrjsiuAm{£

rpipnodesserp[lobiuAcj]dire[torincq]'[tfihS]fontiopscxseththiA\)sys^sthisei

JJIMipilJMeJBMUUyStdBp3]0]sI3thOIUIIJibu3UIW0JBST3Jeth'J3A3M0H'PBdOJON

athbydeuoppusare$Y3raNIPUB(eUIP(YSHNIJSplunssthytnoy,ierenurtojnU

.UModdelhApnauucsi[ecBpS]Jethsh/wjsetpuloM(66"(YEXNI

ntioncfueth'(elpuiBexroj)'XbeerhMottbasuniuibthiMntioncufnocninteuretBis

OYSXMI3thS|SQiciiAi3flagthn03?segJ°ssurresjiujesuisouiethfosno

/w/aswLie\mq'ejduns'SV9A3XNI

(N-)A3»NI

O,SUO|}ou!qwoofia>(.•'PUBO}[dO}S3J

Ied*:*!

uojvlnuiBX3>IMIdupofotl

0861 viYd ,..00II0I00.. ..OOIIOOIO.. ..OOIIOOIO.., ,..OOIIOOOI.. ..00II000I..

0916 viYd ,ii01TTTTTT" ..OOIIOOOO.. .,00110000.., ..OIIIIOOO..

0I/.I

OOZ.l

viva '"OTTTTIIT" ..OIIOOOII,. ..OOOOOOII.., ,..OOOOOOII.. ..OOOOOOII..

OZLX viYd ,..OOOIIIII.. ..OOIOOOII.. ..OIIOOOOI.., ,..0II00000.. ..0TT00000..

OZLX viYd ,..OIIOOOII.. ..OIIOOOII., ..OOIOOOIO.., ..000III00..,

0SZ.I

O4Z.1

viva ,..OOOIIIOO.. ..OOIOOOIO.. ..OIIOOOII.., ,..OIIOOOII.., .,00000011,.

06Z.I viva ,..OOOIIIII.. ..OOIOOOII.. ..OIIOOOII.., ,..OIIOOOII.., ..0TI000II..

OLLT viva ,..OIIOOOII.. ..OIIOOOII.. ..OOIOOOIO.., ..000III00..,

09Z.I

08Z.I

viva ,"OTITTTTTy ..OIIOOOII., ..OIIOOOII.., ,..OIIOOOII.., .,01100000..

0081 viva ,..00100000.. ..OOIIOOOO.. ..00010000.., ,..0001I000.., ..OOOIIOOO..

0181 viva ,..OOOIIOOO.. ..OOOIIOOO.. ..OOOIIOOO.., ..OOOIIOOO..,

0E8I

0Z8I

viva ,..OOOIIIOO.. ..OOIOOOIO., ..OIIOOOII.., ,..OIIOOOII.., ..OIIOOOII..

0*81 viva ,..OOIOOOIO.. ..OOOIIIOO.. ..OOIOOOIO.., ,..OIIOOOII.., ..OIIOOOII..

508I viva ,..OIIOOOII.. ..OIIOOOII.. ..OOIOOOIO.., ..OOOIIIOO..,

0Z.8I

0681

viva ,..OOOIIIOO.. ..OOIOOOIO.. ..OIIOOOII.., ,..OIIOOOII..' ..OIIOOOII..

0881 viYd ,..OIIOOOII.. ..OIIOOOIO.. ..OIIIIIOO.., ,..01100000..' ..0TI00000..

0981 viYd ,..OIIOOOII.. ..OIIOOOII.. ..001000I0.., ..000III00..,

0191

0091

viYd '"OITTTTTT" ..OIIOOIIO.. ..0I000II0.., ,..00000110.., ..000001I0..

0361 viva ,..OOIOOIIO.. ..00IIIII0.. ..00I00II0.., ,..00000II0..,
..OOOOOIIOu

0E9I viva ,..OOOOOIIO.. ..0I000II0.. ..0II00II0.., ..01TITTIT..,

049I

0691

0S6T

NZHI/.I=HH3Alm.ST.D'-9ZflOA

0Z.6TOIOSHOtfHaNO

i

0L6X *e..INIHd:iH0a3H THa-,..auil

0891 INIHd
..nuewu-p»wp^da^ONjof[x][uot^ouivh]sssjij■1iNIHa:

Advanced User Guide 57

own), and the program(ette) INKEY.BAS illustrates how you can incorporate this into

your own programs.

USING THE PROGRAM

Type in the listing and save it as INKEY.BAS before trying it out. Then type:

and the screen will clear and wait for you to press keys. When you do, the value

associated with that key will be shown in hexadecimal. If a particular key

combination is inactive, the previous value will remain displayed. Certain (unlikely to

be needed) combinations will return a value, but it's always the same: &29F. You are

therefore recommended not to use any combinations that return this value because so

many other combinations also return it.

You will find a full list of values for every possible legal key combination in

Appendix 3.

RUN

HOW IT WORKS

10-30 These set up the display and prompt the user.

Dimensions A% ready to store the machine code.

Assembles the machine code into A%.

Calls the machine code.

Assigns F% the value returned by extracting the two-byte value

that has been placed in buffer. If it is zero then no key was

pressed so GOTO 60 and keep looking.

The value returned (F%) is converted to a single hexadecimal

number and displayed.

The assembly procedure. PASS is used in a FOR...NEXT loop

for a two-pass assembly and each pass P% is set to the start of

the destination area for the machine code (A%).

The label inkey is assigned so that Basic can call the more

recognisable inkey, rather than CALL A%, which could mean

anything.

The firmware routine KMREADKBD is called.

The register pair HL is set to point to a buffer that was created

during assembly in order to hold the value returned by

40

50

60

70

80

100-130

150

160

170

KMREADKBD.

170-210 The buffer is now loaded with the values of the registers B and

C which, together, make up the two-byte result, and the code

returns to Basic.

58 The Amstrad Notepad

Functions and procedures

PROCassemble Assembles the machine code.

Main variables and arrays

A% An array to hold the assembled machine code.

inkey The start of the machine code.

F% The value returned.

buffer Area following the machine code in which the two-byte value

returned by KMREADKBD is placed.

P% Pointer to the area of memory to assemble to.

The program

10 CLS

20 PRINT "INKEY(-N) emulator"

30 PRINT-.PRINT "Press any key combinations, or [Stop] to end..."

40 DIM A% 100

50 PROCassemble

60 CALL inkey

70 F%=buffer?0+buffer?l:IF F%=0 THEN GOTO 60

80 VDO 31,0,6:PRINT "Th« value is: £"; P%; " ";

90 GOTO 60

100 DEF PROCassemble

110 FOR PASS=0 TO 2 STEP 2

120 P%=A%

130 [

140 OPT PASS

150 .inkey

160 CALL &B806

170 LD HL, buffer

180 LD (HL) ,B

190 INC HL

200 LD (HL) ,C

210 RET

220 .buffer

230]

240 NEXT

250 ENDPROC

MORTGAGE.BAS

Loan calculator

ort gage calculator

Enter amount oP mortgage: £40000
Enter interest rate : \9
Enter monthly payment : £200

Repayment must be at least £300
Enter monthly payment : £350|

MORTGAGEBAS, how big a mortgage can you afford?

Advanced User Guide 59

This is a very simple program to check how many years a mortgage will take to clear.

With it you can enter the total amount of loan, current interest rate and monthly

payment and the program will calculate how many years it will be before you have

paid off the loan, and what the total repayments amount to.

Having done that you will then be able to enter varying amounts for your monthly

repayments to see what difference the effect of paying more or less each month

would have. However, the program will not allow for a repayment less than the

minimum monthly payment required to pay off a mortgage because below a certain

amount a mortgage would never get paid back and would actually increase each year.

A further point to note is that calculations assume all interest due in each year is paid

in 12 equal monthly instalments and that an amount extra is also paid towards

reducing the balance. So you cannot use this program to check an endowment (or

with profits) mortgage. Also, it is assumed that interest rates remain static throughout

the enure period of the loan.

If interest rates are currently fairly high (15%) or fairly low (5%), it might be an idea

to adjust the rate to take an educated guess for future changes. For example, a 15%

rate might level out over 25 years to an average of 11% or 12%, while a rate of 5%

might more realistically average out at 9% or 10%. In any event, when you do this,

you should not be optimistic.

USING THE PROGRAM

Type in the listing and save it as MORTGAGE.BAS before trying it out. Then type:

RUN

You will then be prompted to enter the amount of the loan, the prevailing interest rate

and your current monthly repayment. Having done this the program will work out

how many years the mortgage will take to pay off and the total amount repaid.

HOW IT WORKS

30 Clears the screen.

40 Points the Basic error handler to a new routine at line 220.

50-80 Prompt the user for the three items of data.

90-1 10 If the monthly payment is not sufficient, tell the user what the

minimum is, and ask for the input again.

120 Sets the year counter to year one.

140 Repeats until finished.

150 Adds the accrued interest for the current year to the amount of

mortgage outstanding. Then deducts the total repayments made

this year.

60 The Amstrad Notepad

160 Prints the current year and how much money is still to be repaid.

170 Increments the year.

180 Looks back to line 140 until the balance is 0 or less.

190-200 Print the total amount repaid and re-run the program.

210 If there was a typing error, or the menu program AUTO was not

found then this line tells Basic to GOTO line 230.

220 The user pressed [Stop] so the program has finished. Now call

up the menu program, AUTO.

230-240 Either there was a typing error in the listing or the file AUTO

was not found. In any event, print the error message and the line

at which it occurred and remind the user how to get back into

the Notepad.

Main variables

amount% The amount of the loan.

rate% The interest rate.

payment% The monthly repayment.

year% The current year.

The program

10 REM Mortgage & Loan Calculator

20 :

30 CLS

40 ON ERROR GOTO 220

50 PRINT "Mortgage calculator" : PRINT

60 INPUT "Enter amount of mortgage: _"amount%

70 INPUT "Enter interest rate : %"rate%

80 INPUT "Enter monthly payment : _"payment%

90 IF payment% > (amount%* (rate%/100)) /12 THEN GOTO 120

100 PRINT " Repayment must be at least _";A$ (amount%* (rate%/100)) /12

110 GOTO 80

120 year%=l

130 PRINT

140 REPEAT

150 amount%=amount%+amount%* (rate%/100) -payment%*12

160 PRINT "Year ";year%;" Outstanding: _";amount%

170 year%=year%+l

180 UNTIL amount% <= 0

190 PRINT: PRINT "Total repaid _" ; year%*payment%*12

200 PRINT "Press any key for another calculation ...";: G=GET : RUN

210 ON ERROR GOTO 230

220 VDU26:CLS:IF ERR=17 THEN CHAIN "AUTO"

230 REPORT :PRINT " at line ";ERL

240 PRINT: PRINT "Press [Function] [X] for Notepad main menu"

Advanced User Guide 61

READYREC.BAS

Statement reconciler

Ready Reconci I er

TOTAL

498. 52|

READYREC.BAS, makes reconciling a doddle.

How often have you wished that your calculator could tot up a column of figures, but

allow you to make corrections to the entries afterwards? It's a common need, both in

business and the home. Whether you're trying to make sense of an order book, your

cheque book or even a till receipt, the problem is identical, and is the main reason for

the huge popularity of spreadsheet programs.

Spreadsheets allow you to quickly trace discrepancies in a list of numbers or

calculations, and make amendments if need be. You can even try out what if?

scenarios with your figures, by adding one or more hypothetical purchases or sales

and then seeing if the new total benefits you in some way.

READYREC.BAS is a program that allows you to do just this. It's based on the more

complex program CALC.BAS, and even borrows some of the same procedures, but

it's a lot shorter and simpler to use and understand.

Like Calc, you enter a list of figures or complex calculations in a large Input window,

scrolling back and forth to make changes where needed, while a separate Totals

window displays the current total.

But unlike Calc, the total in Readyrec is calculated from the SUM of every figure or

calculation in the list, and also unlike Calc you cannot enter accumulative expressions

such as this:

This is because by its very nature, Readyrec automatically adds the result of every

new entry to the running total, making such expressions meaningless.

Depending on your profession you will find Readyrec either more or less useful than

Calc, and it is because the two programs fill two such different needs that they have

both been included in this book, despite the unavoidable repetition of some sections

of code from each.

62 The Amstrad Notepad

USING THE PROGRAM

Type in the listing and save it as READYREC.BAS before trying it out. Then type:

RUN

and the cursor will now be sitting in the bottom left of the Input window, between the

two arrows that indicate where your typed input will go. Now type in any number, or

legal BBC Basic expression such as:

10*37/100

Notice that your input is shown in bold text as you type. In fact, the contents of the

bottom line of the Input window are always shown in bold, because when you are

scrolling through previous calculations it serves to highlight the one currently under

the cursor. Press [Return] and Readyrec will scroll the Input window up one line, and

the Total window will show the result of the calculation.

Now try entering a few simple calculations until the first has completely scrolled off

the top of the display, and see how the total in the Total window changes as the result

of each entry is added on. Now press [Up] a few times, watching as your previous

entries scroll back into view. Note the lines turning bold one by one as they pass

through the bottom line of the Input window.

Stop at any time and edit an expression (one of the features of Readyrec is that it is

permanently in edit mode, so you can change whatever is under the cursor at any

time). Remember that you MUST press [Return] to register the change - if you move

off the line with [Up] or [Down], Readyrec will restore the old contents of the line.

To clear all entries, instead of a calculation type:

CLEAR

(in upper case) and then confirm your decision with the [Y] key.

Line editing is provided by Readyrec, including all the standard editing key functions

you would expect. Here's a complete list of the movement and editing keys used in

Readyrec:

[Right] Cursor right - Moves the cursor one character to the right.

[Left] Cursor left - Moves the cursor one character to the left.

[Up] Previous line - Scrolls the Input window down, and places the previous entry on

the editing line.

[Down] Next line - Scrolls the Input window up, and places the next entry on the

editing line.

Advanced User Guide 63

[Del->] Delete character under cursor - The rest of the line is shunted to the left,

while the cursor remains stationary.

[<-Del] Delete character to left of cursor - The rest of the line is shunted to the left,

and the cursor also moves one position to the left.

[Control] [E] Delete to end of line - All characters to the right of the cursor are

deleted, as well as the character under the cursor (ideal for clearing an old line ready

for a new entry).

HOW IT WORKS

30

40

70

80-90

100-110

120-170

180

210

210

240-280

310

320-380

390

400

410

Calls the setup procedure, and points the Basic error handler to

Readyrec's own error handling routine.

Endlessly calls PROCinput and PROCcalc until [Stop] is

pressed.

Draws the editing line arrows.

Draws both window borders.

Print the program title and the Total window title.

Print a summary of the instructions in the Input window, which

will disappear once the first line is entered.

Dimensions the calculation storage array, calls PROCclear to

print a 0 in the Total window, and tells Basic to display all

numbers to 10 significant figures (the maximum).

Runs through A$0, setting all elements to "" (empty).

Resets both array pointers, clears the total and displays it in the

Total window.

Set up three text windows. In order of appearance they are the

editing line, the Input window and the Total window.

Sets up the edit window, pulls the current calculation from A$()

into e$, gets its length, sets the editing cursor to the left edge of

the window, prints the expression in bold, starts the main input

loop and reads a keypress into key%.

Check the key in key%, and carry out the appropriate editing or

movement function.

If the keypress was a normal character, inserts it into e$ at the

current position by calling PROCinsert.

When [Return] is pressed, checks if CLEAR was typed. If so,

calls PROCwipe - but if e$ is empty, it's forced to contain 0 for

the sake of appearance.

Puts the new expression into A$Q at the current position and

advances the array pointer ptr% (and max% if ptr% was already

at the highest element used so far).

64 The Amstrad Notepad

420 Checks that max% hasn't exceeded the limits of the array A$() -

otherwise adjusts max%.

430 Draws the new Input window contents and returns.

460-470 If x% isn't already at the left-hand side, move it left and redraw

the editing line to show the new cursor position.

500-510 If x% isn't already at the end of the line, move it right and

redraw the ediung line to show the new cursor position.

540-550 If the pointer isn't already at the start of the array, move it to the

previous line, display the new window contents and fetch the

new line for editing.

580-590 If the pointer isn't already at the last entry in the array, move it

to the next line, display the new window contents and fetch the

new line for editing.

620 Calls PROClist to update the Input window, pulls the current line

from A$() into e$, gets its length, sets the editing cursor to the

left edge of the window, sets the edit window up and prints the

expression in bold.

650-670 Insert the character key% into e$, if it isn't already at maximum

length.

700-720 Remove character to left of current character from e$, unless at

start of e$.

750-770 Remove current character from e$, unless at end of e$.

800-820 Truncate e$ at the current position, unless at end of e$.

850-860 Print e$ in bold, followed by the current character in inverse to

act as the cursor.

900-920 Clear Input window and fill it from A$(), starting from either

five lines before the current line, or the start of the array if less

than five entries exist.

950 Clears the total and starts running through each entry in the array

A$(), evaluating and adding its total to tot if it isn't a blank line.

960 Finishes adding the totals, converts the new total to a string so

that it can be padded with spaces and appear right-justified.

970 Prints the new total bin the Total window, in bold text before

returning.

1000-1020 In answer to the user typing CLEAR, display a safety message

on the ediung line in bold. If user presses [Y] in response, clear

all entries with PROCclear.

1030 Calls PROCnewline to redraw the Input window and put the

current calculation back in the editing line before returning.

1080 Resets Basic's numeric accuracy to normal and attempts to run

Advanced User Guide 65

1090

1100-1120

1130

1140

Functions and

PROCsetup

PROCclear

PROCinput

PROCleft

PROCright

PROCup

PROCdown

PROCnewline

PROCinsert

PROCdell

PROCdel2

PROCdeB

PROChilite

PROClist

PROCcalc

the menu program AUTO if the error was generated by pressing

the [Stop] key.

If the error was No such file, AUTO isn't on your Notepad so

jump to the full error report.

If the program gets to here an illegal calculation was made. The

user is informed and asked to acknowledge by pressing [Space].

PROCnewline is called to redraw the Input window and

redisplay the current calculation on the editing line, and a direct

jump is made back to main loop at line 40. Important: This can

only be allowed to happen a certain number of times before the

Basic stack overflows with PROC calls that the error handler has

jumped out of before reaching the ENDPROC.

Displays a full error report.

After the error report the Notepad will be left in BBC Basic, so

this message is displayed to remind users of how to return to the

Notepad main menu.

procedures

Draws the screen and sets up arrays and main variables.

Clears the Input window, resets the Total window.

Takes input from the keyboard, and calls relevant routines for

inserting and deleting characters or moving around.

Moves the cursor one character to the left.

Moves the cursor one character to the right.

Scrolls the window down and places the previous entry on the

editing line.

Scrolls the window up and places the next entry on the editing

line.

Redraws the Input windows at the current position and fetches

the current line for editing.

Inserts a character into the input line.

Performs [<-Del].

Performs [Del->].

Performs [Control] [E].

Prints the current line in bold, and inverses the current character

to act as a screen cursor.

Updates the Input window.

Clears the total, evaluates all the calculations entered so far, adds

the result of each to the total and displays the new total.

66 The Amstrad Notepad

PROCwipe Displays a safety prompt before calling PROCclear to clear all

entries.

Main variables

A$0

max%

and arrays

The input array which holds all the calculations.

Pointer to the highest element of A$() currently used.

Pointer to the current element of A$() being edited.

The total of all calculations entered.

The current keypress being examined.

The expression currently being edited.

The current length of the expression being edited.

The current cursor position on the editing line.

ptr%

tot

key%

e$

1%

x%

The program

10 REM Ready Reconciler

20 :

30 PROCsetup:ON ERROR GOTO 1080

40 REPEAT :PROCinput :PROCcalc: UNTIL FALSE

50 :

60 DEF PROCsetup

70 VDU 26:CLS:PRINT TAB (0, 6) ;CHR$ (27) ;CHR$ (16) ; TAB (56, 6) ;CHR$ (27) ;

CHR$(17);

80 MOVE 0,6: DRAW 342, 6: DRAW 342, 57: DRAW 0,57: DRAW 0,6

90 MOVE 364,6:DRAW 452,6:DRAW 452,18:DRAW 364,18:DRAW 364,6

100 PRINT TAB(60, 1) ;CHR$ (17) ; "Ready Reconciler" ; CHR$ (18)

110 PRINT TAB (66, 4) ; "TOTAL"; :PROCwinlist

120 PRINT TAB(21, 0) ; CHR$ (17) ; CHR$ (19) ; "Instructions" ; CHR$ (20) ; CHR$ (18) ;

130 PRINT TAB (1, 2) ; "Enter a list of formulae to be summed, using ";

140 PRINT CHR$ (17) ;CHR$ (27) ;CHR$ (30) ;CHR$ (18) ; ", ";

150 PRINT CHR$ (17) ;CHR$ (27) ;CHR$ (31) ;CHR$ (18) ; " and "

160 PRINT TAB(1, 3) ; CHR§ (17) ; "Return" ; CHR$ (18) ; " to edit any line. ";

170 PRINT"Type " ; CHR$ (17) ; "CLEAR" ; CHR$ (18) ; " to clear the list."

180 DIM A$ (255) : PROCclear : @%=£A0C : ENDPROC

190 :

200 DEF PROCclear

210 FOR p%=0 TO 255 :A$(p%)="": NEXT

220 max%=0 : ptr%=0 : t ot=0 : PROCcalc : ENDPROC

230 :

240 DEF PROCwinin:VDU 28 , 1 , 6 , 55 , 6 : ENDPROC

250 :

260 DEF PROCwinlist:VDU 28 , 1 , 5 , 55 , 1 : ENDPROC

270 :

280 DEF PROCwintot:VDU 28, 61, 6, 74, 6: ENDPROC

290 :

300 DEF PROCinput

310 PROCwinin:e$=A$ (ptr%) :x%=l : 1%=LEN (e$) : PROChi lite -.REPEAT : key%=GET

320 IF key%=242 PROCleft

330 IF key%=243 PROCright

340 IF key%=240 PROCup

350 IF key%=241 PROCdown

360 IF key%=127 PROCdell

Advanced User Guide 67

370 IF key%=33 PROCdel2

380 IF key%=5 PROCdel3

390 IF key%<>33 AND key%<>5 AND key%>31 AND key%<127 PROCinsert

400 UNTIL key%=13:IF e$="CLEAR" PROCwipe : ENDPROC ELSEIF «$="" e$="0"

410 A$(ptr%)=e$: ptr%=ptr%+l : IF ptr%>max% max%=max%+l

420 IF max%>255 max%=max%-l :ptr%=ptr%-l

430 PROClist: ENDPROC

440 :

450 DEF PROCleft

460 IF x%=l ENDPROC

470 x%=x%-l:PROChilite: ENDPROC

480 :

490 DEF PROCright

500 IF X%=1%+1 ENDPROC

510 x%=x%+l:PROChilite: ENDPROC

520 :

530 DEF PROCup

540 IF ptr%=0 ENDPROC

550 CLS : ptr%=ptr%-l : PROCnewline : ENDPROC

560 :

570 DEF PROCdown

580 IF ptr%=max% ENDPROC

590 CLS : ptr%=ptr%+l : PROCnewline : ENDPROC

600 :

610 DEF PROCnewline

620 PROClist :e$=A$ (ptr%) :x%=l : 1%=LEN (e$) :PROCwinin:PROChilite: ENDPROC

630 :

640 DEF PROCinsert

650 IF 1%=54 ENDPROC

660 e$=LEFT$ (e$, x%-l) +CHR$ (key%) +RIGHT$ (e$, l%+l-x%)

670 1%=1%+1 : x%=x%+l : PROChilite : ENDPROC

680 :

690 DEF PROCdell

700 IF x%=l ENDPROC

710 e$=LEFT$ (e$, x%-2) +RIGHT$ (e$, l%+l-x%)

720 x%=x%-l : 1%=1%-1 : PROChilite : ENDPROC

730 :

740 DEF PR0Cdel2

750 IF x%=1%+1 ENDPROC

760 e$=LEFT$ (e$, x%-l) +RIGHT$ (e$, l%-x%)

770 1%=1%-1: PROChilite: ENDPROC

780 :

790 DEF PROCdel3

800 IF X%=1%+1 ENDPROCA

810 e$=LEFT$ (e$,x%-l)

820 l%=x%-l: PROChilite: ENDPROC

830 :

840 DEF PROChilite

850 c$=MID$ (e$,x%, 1) : IF c$="" c$=" "

860 CLS:PRINT CHR$ (17) ; e$; TAB (x%-l , 0) ;CHR$ (14) ;c$;CHR$ (15) ;CHR$ (18) ;

870 ENDPROC

880 :

890 DEF PROClist

900 PROCwinlist : CLS: IF ptr%=0 ENDPROC

910 IF ptr%<5 top%=5-ptr%:p%=0 ELSE top%=0 : p%=ptr%-5

920 FOR y%=top% TO 4: PRINT TAB (0 , y%) ;A$ (p%) ;: p%=p%+l :NEXT : ENDPROC

930 :

940 DEF PROCcalc

950 tot=0:FOR p%=0 TO max%:IF A$(p%)<>"" tot=tot+EVAL (A$ (p%))

960 NEXT:PROCwintot :t$=STR$ (tot) :t$=STRING$ (14-LEN(t$) , CHR$ (32))+t$

68 The Amstrad Notepad

970 CLS:PRINT CHR$ (17) ; t $; CHR$ (18) ; : ENDPROC

980 :

990 DEF PROCwipe

1000 PROCwinin:CLS

1010 PRINT TAB(11, 0) ;CHR$ (17) ; "Clear list - Are you sure (Y/N)?";

CHR$ (18) ;

1020 REPEAT : g%=GET AND 223: UNTIL g%=89 OR g%=78:CLS:IF g%=89 PROCclear

1030 PROCnewline: ENDPROC

1040 :

1050 REM This last section handles lines rejected by EVAL.

1060 REM Note: Repeated errors will eventually overflow the stack.

1070 :

1080 IF ERR=17 @%=£90A:VDU 26 : CLS : CHAIN "AUTO"

1090 IF ERR=214 GOTO 1130

1100 err$="Error in "+A$(p%)+" - press SPACE" :PROCwinin: CLS

1110 PRINT TAB(27-LEN(err$) /2, 0) ;CHR$ (17) ;err$;CHR$ (18) ;

1120 REPEAT: UNTIL GET=32: CLS :ptr%=p%: PROCnewline: GOTO 40

1130 VDU 26: CLS: REPORT: PRINT" at line ";ERL

1140 PRINT: PRINT "Press [Function] [X] for Notepad Main Menu"

SCALES.BAS

Conversion Scales

Convers i oii Scales P B B=flx fi=BH-

QtyMTl Cubic Feet 8 0283

Litres 0.5683 1

lig = AM
Litres
Litres

4 . 546
3.785US Go 1 1 ons

SCALES.BAS, stay conversant with conversions.

It's often useful to convert figures from one unit of measurement to another, and by

now most of us know the old trick of multiplying inches by 2.54 to get centimetres.

But it would be nice to have a decent set of conversion tables handy for all occasions,

because you never know when you might need to change ounces to grams or

kilograms, or perhaps litres into gallons.

SCALES.BAS was designed to fill this gap, and it's much easier to use than those

little bits of paper you can buy to fit inside your Personal Organiser because it does

the conversions for you. Not only that, it will store any number you enter and show it

converted between any one of the many units of measurement it supports (currently

34) - all you have to do is scroll up and down the list, and the program does the rest.

And it's expandable, should you find its current repertoire too limited. The method is

detailed in the line-by-line program explanation, in the discussions of lines 790

onward (especially lines 930 - 1260).

Advanced User Guide 69

USING THE PROGRAM

Type in the listing and save it as SCALES.BAS before trying it out. Type:

RUN

and after a short while (during which it reads in and expands the data) the screen will

change to show a large, scrollable window containing the first few units of

measurement, with the highest pair highlighted in inverse colours.

On the left is the status box into which you can enter a number to be converted. This

is shown next to the word Qty. Below this are two totals, labelled A>B= and B>A=.

The purpose of these will become clear when you look at the larger window which is

divided into three parts: the two units to convert between and the conversion factor

(included purely for show, and as found in standard paper conversion tables).

Above the left and right-hand units of measurement are the letters A and B

respectively, and these are used in the status box to show the direction of conversion

between the two units.

Whatever value is currently entered next to Qty, the number shown immediately

below is the result of converting this value from unit A to unit B, while below this is

the result going the other way - that is, from unit B to unit A.

To take the example of converting from inches to centimetres (which is at the top of

the list when you first run the program), a Qty of 1 would give results of 2.54

(representing inches to centimetres) and 0.393 (centimetres to inches) respectively.

Initially the Qty value is set to zero. To enter a number for conversion, press [Return]

at any time. Type in the number and press [Return] again, and the results in both

directions are immediately shown below.

You can now scroll through the various conversions available using the [Up] and

[Down] keys; new results for your original input will be calculated for the currently

highlighted unit pairs as you move through the table, and your input will remain

unchanged until you press [Return] to enter a new value.

HOW IT WORKS

30 Points the Basic error handler to Scale's own error handling

routine at line 1280, and restores Basic's original format of

numeric output in the event of an error.

40 Cancels any windows and asks the user to wait while the DATA

is read in and expanded.

50 Calls PROCsetup to read in the data, PROChighlight to invert

the top line of the units of measurement window and then sits in

an infinite REPEAT...UN TIL loop reading keys and fetching the

user's input.

70 The Amstrad Notepad

90

100

110-130

140-200

210

220

260-280

310

320

330

360

370

380

410

440

480

Stores Basic's original numeric output format and then sets it

always to display numbers in floating point with a maximum of

three decimal places in a field width of 12. Then clears the input

variable input, sets the array pointer scale% to 1 and sets the

window row pointer row% to 0.

Reads the size of the lexicon, dimensions the lexicon store array

and reads in the words.

Read the size of the table, dimension the array and read in the

data, expanding the numbers into the words that are stored in the

lexicon.

Clear and draw the screen, making good use of VDU statements

to cut down on the number of PRINT CHR$() commands that

would otherwise be necessary.

Prints the starting value, 0, and calls PROCoutput to print both

conversions (quicker than printing 0.000 on the result lines).

Activates the main window and prints the first screenful of

available conversions.

Read the keyboard until [Return] is pressed, checking for the

[Up] and [Down] keys and calling the relevant scroll routine if

either is pressed and the pointer is able to move in that direction.

Un-inverses the current line and decrements both the pointer and

the current screen row.

If the screen pointer is off screen, adjusts it and redraws the

window to simulate a downward scroll.

Inverses the new current line, calculates and displays the new

conversions and returns.

Un-inverses the current line and increments both the pointer and

the current screen row.

If the screen pointer is off screen, adjusts it and executes a line

feed from the bottom line to force an upward scroll, after which

the new bottom line is pulled from the array and printed.

Inverses the new current line, calculates and displays the new

conversions and returns.

Fills the main window from the units of measurement array, with

the current line at the top.

Inverses the entire width of the main window at the current row

position by using PLOT 102 (inverse rectangle).

Flushes the keyboard buffer by reading INKEY(O) until no key

press is returned, then clears the input window and prompts for a

number.

Advanced User Guide 71

490

520

530

570-720

750

790

800-810

820

830

860

870-900

920

930-1260

Clears the input window again, and prints the user's input so that

it is formatted the same way as the results.

Selects and clears the A>B result window and prints the

conversion going from left to right.

Selects and clears the B>A result window and prints the

conversion going from right to left.

Define the windows used, which in order are program title, table

header, the table itself, input, A>B and B>A.

Returns the passed string with the passed number of spaces

tacked on the end.

Starts reading a complete unit of measurement from data

consisting of four numbers. Each number is an index into the

lexicon, and has been ORed with 64 if the last letter isn't wanted

(to turn a plural into a singular) or with 128 if the last two letters

aren't wanted (special case - turns inches into inch). This system

saves on space, effectively doubling the number of words in the

lexicon.

The numbers are ANDed in turn with 64 and 128 and chopped

by one or two characters respectively.

If the number pointed to a real lexicon entry and was not zero

(denoting no word) it is joined to p$ and a space is added -

unless it is the last of the four words.

Closes the loop and returns the newly-concatenated string.

Holds the number of words in the lexicon.

List the words in the lexicon - all the complex strings in the

table are made from these building blocks.

Holds the number of entries in the conversion table.

Hold the entire conversion table as pairs of four numbers

followed by a conversion factor for that pair. The four numbers

each represent a word from the lexicon, but some are further

coded by being ORed with 64 or 128, denoting that the last one

or two letters respectively of that word are not wanted when the

table is constructed. This allows re-using plural words as

singular, so long as all that is required to turn them singular is to

remove no more than two letters from the end.

Functions and procedures

PROCsetup Dimensions the arrays, reads in the data and draws the screen.

PROCscan Reads the keyboard until [Return] is pressed, checking for the

[Up] and [Down] keys and calling the relevant scroll routine if

either is pressed.

72 The Amstrad Notepad

PROCscroll_up Scrolls the units of measurement window down to highlight the

previous pair of units.

PROCscroll_down Scrolls the units of measurement window up to highlight the

next pair of units.

PROCscreen Redraws the units of measurement window with the current pair

of units at the top.

PROChighlight Inverses the entire width of the units of measurement window at

the current row. Called twice in a row to cancel the effect.

PROCinput Takes a new input from the user and displays it.

PROCoutput Converts the current user input both ways using the current pair

of units and displays the two results.

FNpadO Returns the passed string with the passed number of spaces

tacked on the end.

FNconcat Builds the left and right-hand units of measurement strings from

data.

Main variables and arrays

lex$() Holds the lexicon of words from which the units of measurement

names are built.

table$() Holds the text of the conversion table.

scale() Holds the conversion factors for all units of measurement pairs.

lex% The number of words in the lexicon.

max% The number of entries in the conversion table.

scale% Pointer to the current units of measurement pair in table$() and

its conversion factor in scale().

row% The current screen row in the units of measurement window.

input The current user's input.

The program

10 REM Sliding Conversion Scales

20 :

30 ON ERROR @%=fmt%:G0T0 1280

40 VDU 26:CLS:PRINT "Please wait..."

50 PROCsetup : PROChighlight : REPEAT : PROCscan : PROCinput : UNTIL FALSE

60 END

70 :

80 DEF PROCsetup

90 fmt%=@% : @%=&2030C : input=0 : scale%=l : row%=0

100 READ lex%:DIM lex$ (lex%) : FOR n%=l TO lex%:READ lex$ (n%) : NEXT

110 READ max%:DIM table$ (max%) : DIM scale (max%) : FOR n%=l TO max%

120 tl$=FNpad (FNconcat, 22) +CHR$ (179) : t2$=FNpad (FNconcat , 22) +CHR$ (17 9)

130 READ f$: scale (n%)=VAL(f$) : t3$=FNpad (f$, 11) :table$ (n%) =tl$+t2$+t3$:

NEXT

140 CLS:MOVE 0,4:DRAW 479,4:DRAW 479,59:DRAW 0,59:DRAW 0,4

Advanced User Guide 73

150 MOVE 123,4:DRAW 123,59:MOVE 123,43:DRAW 479,43

160 MOVE 260,4:DRAW 260,43:MOVE 398,4:DRAW 398,43

170 PROCwinl: PRINT TAB (1, 0) ;CHR$ (17) ; "Conversion Scales"; CHR$ (18)

180 PRINT TAB(2,2) ; "Qty: "; :VDU 31,1,4,65,175,66,32,61,31,1,5,66,175,65,

32, 61

190 PROCwin2:VDU 31,11,0,65,31,34,0,66

200 VDO 31,47,0,66,61,65,120,32,32,65,61,66,246

210 PROCwin_in:CLS: PRINT input; : PROCoutput

220 PROCwin3 : PROCscreen

230 ENDPROC

240 :

250 DEF PROCscan

260 REPEAT : i%=INKEY (0) : IF i%=240 AND scale%>l PROCscroll_up

270 IF i%=241 AND scale%<max% PROCscroll_down

280 UNTIL i%=13 : ENDPROC

290 :

300 DEF PROCscroll_up

310 PROChighlight : scale%=scalo%-l : row%=row%-l

320 IF row%<0 row%=0 :PROCwin3 : PROCscreen

330 PROChighlight : PROCoutput : ENDPROC

340 :

350 DEF PROCscroll_down

3 60 PROChighlight : scale%=scale%+l : row%=row%+l

370 IF row%=4 row%=3 :PROCwin3 :VDU 31, 0, 3, 10 :PRINT table$ (scale%) ;

380 PROChighlight : PROCoutput : ENDPROC

390 :

400 DEF PROCscreen

410 FOR g%=0 TO 3:PRINT TAB (0, g%) ; table$ (g%+scale%) ; :NEXT :ENDPROC

420 :

430 DEF PROChighlight

440 MOVE 126, 64- (row%+3) *8 -.PLOT 102, 474, 64- (row%+4) *8

450 ENDPROC

460 :

470 DEF PROCinput

480 REPEAT : UNTIL INKEY (0) :PROCwin_in : CLS : INPUT" "input ;

490 CLS: PRINT input; : PROCoutput : ENDPROC

500 :

510 DEF PROCoutput

520 PROCwin_to: CLS: PRINT input*scale (scale%) ;

530 PROCwin_from: CLS: PRINT input/scale (scale%) ;

540 ENDPROC

550 :

560 DEF PROCwinl

570 VDU 28,1, 6, 19,1: ENDPROC

580 :

590 DEF PROCwin2

600 VDU 28,21,1, 78,1: ENDPROC

610 :

620 DEF PROCwin3

630 VDU 28, 21, 6, 78, 3: ENDPROC

640 :

650 DEF PROCwin_in

660 VDU 28,7,3,19,3:ENDPROC

670 :

680 DEF PROCwln_to

690 VDU 28, 7, 5, 19, 5:ENDPROC

700 :

710 DEF PROCwin_from

720 VDU 28, 7, 6,19, 6:ENDPROC

730 :

pvd9}0Mpvujsuiypi/j;

..nuewufBWppda^ONJOj[x][uoT^ouna]S8eaa1,iNIHd:JiNIHdOIEI

rraa-'..sutt3*..iNiHd^iHoaaHooei

..Oinv,,NIYHDN3HIi.I=HH3Ji:S10:93HOA0621

OOEI0103H0HH3NO0831

:Oi.31

E0Z.0"0'63'6T'fr3'82'631'61'frZ'6VIVO0931

frTS3fr-0'0'6/.'fr3'H'TZ.'E3'fr3'*viva0S3I

I0frSE-0'0'6L'fr3'H'IZ.'33'fr3'frVIVO0*31

*»E609"T'0'9Z'»2'H'0'93'fr3'frVIVO0E3I

88'0'S3'*3'3'0'93'*3'frYXVa033T

8-0S'0'0'0'i.T'0'0'0'0IVIVO0I3T

S0'9T0T'0'0'0'Z.T'0'0'0'TT"Viva0031

S09I0"T'0'0'0'8I'0'0'0'IIYIYO0611

6S£S*'0'0'0'0'Z.I'0'0'0'6YIVCI0811

Z.E36S-ES*'0'0'0'9I'0'0'0'6"VIVO0Z.II

g6*£-83'0'0'0'9I'0'0'0'8VIVO0911

S6003'I'0'0'Z.'£3'0'0'/.'33YIYdOSII

S8Z.'E'0'0'0'9I'0'0'Z.'E3VIVOOUT

9*S"fr'0'0'0'SI'0'0'Z.'33VIVOOETT

E89S"0'0'0'0'ST'0'0'Z.3'33VIVa03IT

E830-0'0'0'£l'03'0'0'3'03YIVCIOUT

9/L"0'0'0'£I'03'0'0'E'03VIVO0011

Z.IE"83'0'0'0'SI'0'0'3'03VIVO060T

Z.8E"9I'0'0'3I'03'0'0'I'03YIYCI0801

Z.fr0*00"0'0'0'frl'61'0'0'0'9VIVOOLOZ

989*0**0'0'0'0'S'0'0'0'9VIVO0901

98*9»0*'0'0'6T'6T'0'0'0'9Viva0S0I

6668S-3'0'0'H'6I'0'0'fr'61VIVO0*01

9E8"0'0'0'ET'6T'0'0'E'6TYlVdOEOI

E06360-0'0'0'£I'6I'0'0'3'6IYIYd0301

*OEO"6Z6'0'0'ST'6T'0'0'Z'6TYJ.YCIOTOT

3S*'9'0'0'3I'6I'0'0'I'6IYIYd0001

i.Z'£S8T'0'0'0'»T'0'0'»'TZVIYd066

609'T'0'0'0'*T'0'0'0'»VIYa086

E"609T'0'0'0'EI'0'0'0'*YIYd0Z.6

»»T6*0'0'0'0'ET'0'0'0'EYlVd096

8*0£-0'0'0'0'EI'0'0'0'3VIYd0S6

8*-0E'0'0'0'3I'0'0'0'3YIYd0*6

frS'3'0'0'0'31'0'0'0'1VIYa0E6

*EVIVO036

BXq^Iuo-psaeAUOoW2TH016

uio'soxTX's^UTa'^noH's^nuTW'JScE'Sn'Xn'l^aT^nBH'OTCtnoYIYd006

•avnbs'seuuoj;'swinirea£oxTOI'seumreag'ssj^tt'sea^suioxTOIViva068

saa^BH'sea^auiT^ueo'suoq.£uoi's^qBTBMpsjpunH'spunoaYIYd088

SBOuno'8UOXXB9'seaoY'8eaH^oaH's©TTW'8P^«A'^»»J's»qouiYIYd0Z.8

63VIVO098

uootxbtW3H0S8

:0*8

$d=:ixaK0£8

(3E)$HHO+$d=$d*>%«.3i:$*+$d=$d....<>$»3.1038

(3-($m)N3T$«)$I.3aT=$«831CINY%a018

(I-($*)NaT$M)$I.3OT=$**9dNY%A008

(IEONY%a)§xex=$*:%A0Y3H:frOII=%*HOd:..„=$<J06L

IVDUoomaaaa08Z.

:OLL

$d=09/.

((3E)$HHO'($d)N3n-%d)$SNIHiLS+$d=$d0SL

(%d'$d)pFdNaaaao*z.

Advanced User Guide 75

STYLE.BAS

Style Checker

Menu of Options

(A)nalyse a Neu Document
COomment on Current Document
CTJips for Good Writing
(Q)uit Style Master!

STYLEJBAS, correct your writing wrongs.

Style checkers are programs that attempt to analyse your writing for errors in

grammar and style, and the better versions manage this seemingly incomputable task

with a fairly high degree of accuracy. It has been argued that you shouldn't take the

advice offered by these programs too seriously as it tends to be rather pedantic and

robotic, but it's surprising just what can be learnt from more modest examples of the

genre, given their limited scope.

STYLE.BAS is just such a program, and while it doesn't exactly jangle with bells and

whistles it can certainly give some of the big guns a run for their money.

Firstly, though, you should note that Style can seem slow at times, especially when

digesting large documents - but after all, it is written in Basic as opposed to machine

code, and it gets there in the end.

As a fully working, seriously written program Style serves as a good example of just

what you can do with the much maligned Basic language - just don't let it loose on

your first novel, unless you've got some time on your hands.

And now a brief word about style checking (very brief - a full discussion could easily

fill the pages of this book) and in particular the points checked for by Style.

Four distinct areas of writing style are looked at by the program: use of passive verbs,

hidden verbs, abstract nouns and complex sentences. On top of this a full readability

score is generated at the end of each analysis, giving both the standard Fog and

Flesch-Kincaid Indices for the piece.

Passive verbs are by far the worst offenders in writing (readers interested in exploring

the subject further should consult a copy of Fowler's Modern English Usage,

published by Oxford University Press as part of their Oxford Reference series).

And although passive verbs are easy to avoid, they account for most bad writing

habits. Here is an example:

It has been decided that all coffee breaks are now banned.

76 The Amstrad Notepad

Who decided it? You can't tell from the wording, and this is a trick people often use

when they wish to remain anonymous and unconnected with a particular memo or

announcement. The result, apart from being rather impersonal, is a very stuffy and

lifeless writing style.

The trouble is that most people think that this is the correct way to write formally,

when it is actually the worst way to write anything. Here is the corrected version, this

time with the verb to be made active:

/ have decided that all coffee breaks are now banned.

This is much better. Not only is it now clear who was responsible for the decision,

but the whole sentence has come alive, and is more approachable. Well, sort of.

If you can catch passive verbs and, where possible, remove them from your writing,

you'll probably improve it more than by any other single method.

USING THE PROGRAM

Type in the listing and save it as STYLE.BAS before trying it out. Type:

RUN

and after a short while (during which it reads in and displays a rather inspirational

bust of Shakespeare) the Main Menu will appear.

Press [A] to analyse a new document, and the Notepad File Selector window will

appear. Choose the document you want to analyse and press [Return], and it will be

read in word by word. There is no restriction on the size of documents that Style will

handle, but you'll have to be pretty patient if you want to see how War and Peace

stacks up against the collected works of Stephen King.

As soon as the document is read, you will get an instant judgement on the right-hand

side of the screen. This is based purely on the reading age that Style judges you

would need to understand the document without difficulty.

Also displayed on the right is the famous Fog Index, as well as the not quite as

famous Flesch-Kincaid Index, should you be interested. Briefly, the higher the Fog

Index the harder the writing is to understand, and a value of 12 is about average.

If you want a more subjective assessment of the piece, press [C] from the Main Menu

for a brief, plain English commentary on the overall style, structure, meaning and

impact of the document.

Pressing [T] displays a short list of tips for good writing, all of them widely

recognised and well-proven. Finally, pressing [Q] will quit Style. So does pressing

Advanced User Guide 77

[Stop] for that matter, but exiting properly ensures that a friendly safety warning is

always displayed, just in case you pressed the wrong key.

HOW IT WORKS

30

90

100

110-120

130

140

150

160-180

190-200

210

240-250

260

280-320

350-360

370440

450

460-480

490

520

530-590

620-640

Points Basic's error handler to line 60, where the program ends

up when it has finished.

Dimensions two memory arrays to hold the two machine code

routines used by Style.

Loads previously saved screen file from disk, if it exists.

Draw a border around the screen, and two vertical lines to

delineate the central window.

Sets up the left-hand window and prints the program title.

Calls PROCbust to draw a picture of Shakespeare - this is

jumped over if the program has been used at least once, in which

case the ready-drawn screen will be loaded into display ram.

Calls PROCnew to reset the readability scores and document

name, and sets up various thresholds used during analysis.

Dimension the comment arrays and read in all the style

comments.

Dimension the passive and hidden verb arrays and read in the

passive verb partners and hidden verb endings.

Saves the screen, if no screen file for this program exists.

Clear the document flag and current document name, and reset

the readability scores.

Displays the current document status.

Define the three text windows, which in order are: the left hand

box, the central window and the right hand status box.

Display the current document name, and if none is loaded return

from the procedure.

Display the overall readability rating.

Sets up Basic's numeric output format to display numbers in

floating point with always one decimal place, in a field width of

five.

Print the document readability statistics: average sentence length,

Fog Index and Flesch-Kincaid Index.

Restores Basic's numeric output format.

Sets the origin for the top left of the bust.

Draw Shakespeare's bust, by decoding the bit map data into a

36x36 pixel sprite and plotting the pixels individually.

Plot the point passed by PROCbust at the position of the current

78 The Amstrad Notepad

X and Y loop variables plus the original top-left offset in xo%,

yo%.

670-710 Print the menu title and options.

720-750 Read the keyboard until a valid key is pressed, and call the

appropriate procedure.

760 If the interpreter got this far, [Q] was pressed so Style confirms

that the user wants to quit, setting quit% TRUE if [Y] is pressed

in response.

800 If a document is currently loaded, Style ensures user really wants

to analyse another.

810 Calls the machine code routine for displaying the Notepad file

selector, after which the screen is reloaded from disk.

820 If the user pressed [Stop] to exit the file selector, FNselect will

have returned "", so return.

830-900 Read in each word from the selected document, counting the

end-of-sentence flags, calculate the overall readability scores, set

the document loaded flag and print the readability statistics.

920-960 Prompt the user to press [Y] or [N] to confirm the action passed

in m$. Return TRUE if [Y] pressed, otherwise FALSE.

1020-1040 Calculate the Fog Index and the Flesch-Kincaid Index for the

document just analysed.

1080-1110 Calculate the percentage of sentences in which each of the four

style errors occurred.

1150-1220 Read the next word from the open document, discarding

non-alphabetic characters and setting the end-of-sentence flag

eos% TRUE if any of the three main stop characters is found.

1250-1260 Return TRUE if the passed character is a letter.

1280-1300 Return TRUE if the passed character is an end-of-sentence

marker.

1320-1340 Set up various counters ready for the start of the next sentence.

1360-1400 Check the passed word for any one of these three style errors:

passive verb, hidden verb, abstract noun.

1420-1470 Return the number of syllables in the passed word.

1490-1510 Return TRUE if the passed character is a vowel.

1530-1580 Check to see if the passed word is the final part of a passive verb

- these are spread across two words, so a flag is already set if

the previous word was the start of a possible passive verb.

1600-1630 Check if the passed word is a hidden verb.

1650-1670 Check if the passed word is an abstract noun.

1690-1710 Check if the sentence just read is complex.

Advanced User Guide 79

1730-1800 Display a style commentary based on the percentage of the four

errors checked for that were found.

1820-1870 Return an index into one of the four commentary arrays, taking a

style fault percentage as input.

1890-1960 Display four tips for good writing.

1980-2100 The complete bit map of Shakespeare's bust.

2130 The words which invariable start passive verb word pairs.

2160 The letters with which hidden verbs invariably end.

2190-2230 List five possible comments pertinent to the overall style of the

piece.

2260-2300 List five possible comments pertinent to the overall structure of

the piece.

2330-2370 List five possible comments pertinent to the overall clarity of the

piece.

2400-2440 List five possible comments pertinent to the overall impact of the

piece.

2460-2530 The function responsible for calling the Notepad file selector

code. The function returns either a file name, or a null string if

[Stop] was pressed.

2550-2780 Assemble machine code that will call the Notepad file selector.

2800 Points the Basic error handler to a full error report in the event

of a further error occurring while attempting to run the menu

program AUTO. This is in case AUTO isn't present on your

Notepad.

2810 Attempts to run the menu program AUTO if the error was

generated by pressing the [STOP] key.

2820 If the error was caused by something else, or if AUTO isn't on

your Notepad, a full error report is displayed.

2830 After the error report the Notepad will be left in BBC Basic, so

this message is displayed to remind users of how to return to the

Notepad main menu.

2860 Start of procedure that assembles the screen saver/loader, which

saves a copy of the screen after everything is drawn the first

time, and loads it in each time thereafter.

2870-2910 Define the five NC100 jump block routines to be used.

2930-2940 Begin the two-pass assembly and set P% (the assembly

destination pointer) to the start of the previously dimensioned

Z%.

3000 Pages the 16K of RAM with the video memory in at address

&C000.

80 The Amstrad Notepad

3010-3040

3050

3060-3070

3080

3090-3110

3120

3160-3170

3190-3210

3250-3280

3290-3340

3350-3370

3410-3420

3430-3460

3500-3510

3570-1760

3610

3630

Functions and

PROCsetup

PROCnew

PROCstatus

PROCbust

PROCplot

PROCmenu

PROCanalyse

PROCfog

PROCscore

Copy the contents of video RAM down to &8000.

Puts back the video RAM.

Open a file for saving the screen data.

Returns if unable to open the file.

Save &1000 bytes from &8000 to the file.

Closes the file and exits.

Open a file for reading.

If unable to open the file set the contents of flag to zero and

return.

Read the &1000 bytes to location &8000 then close the file.

Map the video RAM 16K block into &C000, copy the &1000

bytes from location &8000 up to &F000 and then put back the

screen RAM.

To indicate successful loading, set the contents of flag to 1 then

return.

Save the current status of the bank switcher for block 4

(&C000-&FFFF).

Map the video RAM into main RAM then return.

Restore the state of the bank 4 bank switcher and its copy at

&B003.

The file name STYLE.SCN.

The flag to indicate successful file loading.

Temporary storage of the state of the bank switcher.

procedures

Dimensions all arrays, reads in the data and draws the bust

(unless a screen file is found, in which case this is loaded

instantly).

Resets all the document pointers ready for a new file to be

analysed.

Displays the readability scores in the status box.

Decodes and draws Shakespeare's bust.

Plots a single point from the bust image.

Displays the main menu and calls one of the three main

procedures, according to the key pressed.

Analyses the document just selected for style faults.

Generates a Fog Index and Flesch-Kincaid Index.

Converts the number of style faults of each of the four types into

Advanced User Guide 81

PROCnewsen

PROCcheck_word()

PROCpv()

PROChv()

PROCan()

PROCcomplex

PROCcomment

PROCadvice

FNsure()

FNread_word()

FNisalphaO

FNisend()

FNsyllables()

FNvO

FNindex()

Main variables

style$()

structure$()

clarity$()

impact$()

pv$0

hv$0

doc%

doc$

words%

sen%

sy%

hard%

hv%

numbers representing the percentage of sentences in which they

occur.

Clears certain variables in preparation for reading a new

sentence.

Checks the passed word for style faults.

Checks the passed word for a passive verb event.

Checks the passed word for hidden verbs.

Checks the passed word for abstract nouns.

Checks the sentence just read for complexity.

Gives subjective commentary on the overall style.

Displays four tips for good writing.

Asks for confirmation of a named operation, returning TRUE if

[Y] is pressed.

Returns the next word from the file.

Returns TRUE if the passed character is a letter.

Returns TRUE if the passed character is an end-of-sentence

marker.

Returns the number of syllables in the passed word.

Returns TRUE if the passed character is a vowel.

Returns the passed percentage as an index suitable for pointing

into one of the four comment arrays.

and arrays

Contains comments on style.

Contains comments on structure.

Contains comments on clarity.

Contains comments on impact.

Contains the words which usually begin a passive verb pair.

Contains the letter which usually end a hidden verb.

Contains TRUE if a document has just been analysed.

Contains the name of the current document, or No Document.

The number of words in the document.

The number of sentences in the document.

The recommended reading age for the document.

The total number of syllables in the document.

The number of hard words in the document.

The number of hidden verbs in the document.

82 The Amstrad Notepad

pv%

avlen

fog

fk

an%

cs%

senlimit%

The number of abstract nouns in the document.

The number of complex sentences in the document.

The number of passive verbs in the document.

The average sentence length.

The Fog Index of the current document.

The Flesch-Kincaid index.

The current sentence length threshold.

The program

10 REM Style Master

20 :

30 ON ERROR GOTO 60

40 CLS:PROCsetup

50 quit%=FALSE: REPEAT :PROCmenu: UNTIL quit%

60 GOTO 2800

70 :

80 DEF PROCsetup

90 CLEAR-.DIM A% 40, Z% &80 : PROCassemble : PROCassemble2

100 CALL scrn_from_disk:IF ?flag=0 THEN CLS ELSE GOTO 150

110 MOVE 0,0:DRAW 479,0:DRAW 479,63:DRAW 0,63:DRAW 0,0

120 MOVE 96,0: DRAW 96, 63: MOVE 384,0: DRAW 384,63

130 PROCwinl: CLS: PRINT TAB (1, 0) ; CHR$ (17) ; "Style Master" ; CHR$ (18)

140 PROCbust

150 PROCnew: ex%=5 : gd%=15 : av%=30 :bd%=50 : senlimit%=40 : @%=&90A

160 DIM style$ (4) , structures (4) , clarity$ (4) , impact$ (4) :RESTORE 2190

170 FOR s%=0 TO 4:READ style$ (s%) :NEXT:FOR s%=0 TO 4:READ structure$

(s%) :NEXT

180 FOR s%=0 TO 4:READ clarity$ (s%) : NEXT : FOR s%=0 TO 4:READ impact$

(s%) :NEXT

190 DIM pv$ (6) : RESTORE 2130:FOR w%=0 TO 6:READ pv$(w%):NEXT

200 DIM hv$ (3) : RESTORE 2160:FOR w%=0 TO 3:READ hv$(w%):NEXT

210 CALL scrn_to_disk:ENDPROC

220 :

230 DEF PROCnew

240 doc%=FALSE : doc$="No Document " : words%=0 : sen%=0 : fog%=0 : fk%=0 : age%=0

250 sy%=0 : hard%=0 : hv%=0 : an%=0 : cs%=0 : pv%=0

260 PROCstatus:ENDPROC

270 :

280 DEF PROCwinl :VDU 28, 1, 6, 14, 1 :ENDPROC

290 :

300 DEF PROCwin2:VDU 28, 17, 6, 62, 1 :ENDPROC

310 :

320 DEF PROCwln3:VDU 28, 65, 6, 78, 1 :ENDPROC

330 :

340 DEF PROCstatus

350 PROCwin3 : CLS : PRINT TAB (7-LEN (doc$) /2, 0) ;CHR$ (17) ;doc$;CHR$ (18)

360 IF doc%=FALSE THEN ENDPROC

370 PRINT TAB (0, 2) ; "Rating: ";

380 IF age%<=5 PRINT"Great ! "

390 IF age%>5 AND age%<=10 PRINT"Good"

400 IF age%>10 AND age%<= 14 PRINT "Average"

410 IF age%>14 AND age%<=16 PRINT"Poor"

420 IF age%>16 AND age%<=18 PRINT"Bad"

430 IF age%>18 AND age%<=20 PRINT"Awful"

Advanced User Guide 83

440 IF age%>20 PRINT "Abysmal "

450 @%=&20105

460 PRINT TAB (0, 3) ; "SenLen: ";avlen;

470 PRINT TAB (3, 4) ; "Fog: ";fog;

480 PRINT TAB (3, 5) ; "F/K: ";fk;

490 @%=S90A:ENDPROC

500 :

510 DEF PROCbust

520 xo%=30:yo%=43

530 RESTORE 1990

540 FOR y%=l TO 36:x%=0

550 FOR p%=l TO 3: READ c%:V%=0

560 FOR b%=15 TO 0 STEP-1: IF (c% AND 2Ab%)>0 PROCplot (x%, y%)

570 x%=x%+l:NEXT

580 NEXT

590 NEXT

600 ENDPROC

610 :

620 DEF PROCplot (x%,y%)

630 PLOT 69,x%+xo%,yo%-y%

640 ENDPROC

650 :

660 DEF PROCmenu : PROCwin2 : CLS

670 PRINT TAB (16, 0) ; CHR$ (17) ; "Menu of Options" ; CHR$ (18)

680 VDU 31, 10, 2, 17, 40, 65, 41, 18 :PRINT"nalyse a New Document"

690 VDU 31, 10, 3, 17, 40, 67, 41, 18 : PRINT " omment on Current Document"

700 VDU 31,10,4,17,40,84,41,18:PRINT"ips for Good Writing"

710 VDU 31,10,5,17,40,81,41,18:PRINT"uit Style Master";

720 REPEAT : g%=GET AND 223: UNTIL g%=65 OR g%=67 OR g%=84 OR g%=81

730 IF g%=65 PROCanalyse : ENDPROC

740 IF g%=67 PROCcomment : ENDPROC

750 IF g%=84 PROCadvice : ENDPROC

760 IF FNsure ("Quit Style Master") quit%=TRUE

770 ENDPROC

780 :

790 DEF PROCanalyse

800 PROCwin2:IF doc% THEN IF NOT FNsure ("Analyse New Document") THEN

ENDPROC

810 filename$=FNselect:CALL scrn_from_disx: IF ?flag=0 THEN CLS

820 IF filename$="" THEN ENDPROC

830 PROCnew: doc$=filename$: PROCwin2 : CLS

840 1$="Analysing "+doc$:PRINT TAB (23-LEN (1$) /2, 1) ; CHR$ (17) ; 1$; CHR$ (18)

850 PROCnewsen:in%=OPENIN doc$:eos%=FALSE: PRINT TAB (15, 3) "Words read:"

860 REPEAT : word$=FNread_word (in%) : PRINT TAB (28, 3) ; words%

870 PROCcheck_word (word$) : senlen%=senlen%+l

880 IF eos% sen%=sen%+l : PROCcomplex : PROCnewsen

890 UNTIL EOF#in% : CLOSE #in%:PROCfog:PROCscore

900 doc%=TRUE:PROCstatus: ENDPROC

910 :

920 DEF FNsure (m$)

930 CLS:PRINT TAB (23-LEN (m$) /2, 1) ;CHR$ (17) ;m$;CHR$ (18)

940 PRINT TAB(13,3) "Are you sure (Y/N)?";

950 REPEAT : g%=GET AND 223: UNTIL g%=78 OR g%=89:IF g%=89 THEN =TRUE

960 =FALSE

970 :

980 DEF PROCopen(f$)

990 =OPENIN f$

1000 :

1010 DEF PROCfog

1020 avlen=words%/sen% : perhard= (hard%/words%) *100

PS pvddjoftpvujsiuy

aXlHI=%3(%*)$Aq=(fr'$«)$IH3IH3.1-Z010=%*HO&'•aSTYa=%30T9T

($M)AqooHd3.ZQ009T

:06ST

DOHdaNH08ST

anHi=%jAd%jji:ixaNoz.si

anni=%j(%m)$a<i=$«51:9010=%*hoa■asura=%j09SI

oonaaiia:asTY^=%5AdanHi=%?Adaiossi

DOHaaNa:i+%Ad=%Ad:asTVa=%JAdu-p9u=(z'$m)$IH3IHaiN3HIailHI=%?AdaiofrSI

($M)AdooHaaaaOEST

:OZST

asTva=oisi

ann£=

N3HI..a,.=$aHO■■n.,=$AHO..0..=$aHO..I..=$AHO..a.i=$AHO..Y..=$aaiOOST
(£32Qtm($0)OSV)$HHD=$a:($0)ANdaaa06*1

:08frT

2/%8=:iXaN0Z.fr!

I+%s=%s:%a=%5%?<>%Aai09frT

((I'%T'$«)SCIIH)ANa=%A:($M)NOT012=%THOaOSfrT

((T'$«)$153*1)AN.a=%j:0=%a0*H

T=N3HX9=>($M)N3T:aiOEM

($M)9eiqHiiAsNaaaaOZfrT

■OTfrT

DOHdONaOOfrT

($m)uhdoh<3:($«)AqooHd:($M)AdooHd06EI

I+%paBq=%pjpqai:%A+%as=%as:($m)SBiqFixAsHa=%A08ET

ooHdaNa....=$*aiolzt

($»)pio*xoeqooonaaaa09ex

:OSET

DOHdONaOfrET

3S1Ya=%JAd:o=%8fuduoo:0=%aadpaHq:o=%uaiuaa:as1Yd=%90»OEEI

ues*9UD0Hdaaaozei

:OIET

3S1VJ=OOET

anni=NamE9=%oho9{'=%=>hoee=%°ai06ZI

(%o)puasTNaaaa082i

:0Z.2T

asiva=0921

anH,L=N3HI06=>%oaNVS9=<%oai=E22ONY%o=%o0S2I

(%o)pqdTB9Tttaaaa0fr2i

:OEZT

$1=0221

IX3N:(2EHO((I'%T'$«)$aiW)DSV)$HHO+$T=$T:($m)Nan01I=%THOa:....=$T0121

X+%sp^o«=%spaoM„„<>$*ai0021

anHX=%soe(%o)puasxNadiasiaT+%spuiuioc>=%SBunuoofrfr=%oai0611

(%o)BqdiBSTNaIONHO%*P#aoaHINn08IT

(%o)$HHD+$*=$*(%o)eqdT*STNa31■%qo#ia9H=%o:lYaaaH0/.TT

(%o)$hho+$*=$»asia....=NaHi%qo#aoaai0911

(%o)Bqd-[BST:Naho%q=#aoaninn=%q°#iasa=%o:jiYaaan:.,=$*OSII

(%qo)paoMppeaitaaaaOUT

:OETT

DOHddNa0211

001*%u®s/%so=sooil!

00I*%"»s/%Aq=Aq00TI

OOT*%us»s/%u*=UB0601

OOT*%"»s/%Ad=Ad0801

oaoosooHdaaaOZ.OT

:090T

OOHdONaOSOI

g•£+Boj=%eBF:6S1ST-Mds*8"TT+usTABj^E"0=XJOfrOT

%spjoM/%As=Mds:•0*(pJHqj»d+uexAP)=fiojOEOT

Advanced User Guide 85

1620 NEXT: IF f% hv%=hv%+l

1630 ENDFAOC

1640 :

1650 DEF PROCan(w$)

1660 IF RIGHT$ (w$, 5)="ation" an%=an%+l

1670 ENDPROC

1680 :

1690 DEF PROCcomplex

1700 IF (senlen%< (hardper%*3)) OR (senlen%>senlimit%) OR (commas%=0 AND

senlen%>25) OR (commas%>0 AND senlen%> ((commas%+l) *20)) OR (commas%>2 AND

(senlen%< (commas%*4)))) cs%=cs%+l

1710 ENDPROC

1720 :

1730 DEF PROCcomment

1740 IF NOT doc% THEN ENDPROC

1750 PROCwin2 : CLS : PRINT TAB (16, 0) ; CHR$ (17) ; "Style Criticism" ;CHR$ (18)

";CHR$ (18) ;style$ (FNindex (pv))

";CHR$ (18) ; structure$ (FNindex

";CHR$ (18) ;clarity$ (FNindex

";CHR$ (18) ; impact $ (FNindex

1760 PRINT TAB (0,2) ;CHR$(17) ; "Style:

1770 PRINT TAB (0, 3) ;CHR$ (17) ; "Structure:

(cs))

1780 PRINT TAB(0, 4) ;CHR$ (17) ; "Meaning:

(an))

1790 PRINT TAB(0,5) ;CHR$ (17) ; "Impact:

<hv)) ;

1800 G=GET : ENDPROC

1810 :

1820 DEF FNindex (i)

1830 IF i<=ex% THEN =0

1840 IF i>ex% AND i<=gd% THEN =1

1850 IF i>gd% AND i<=av% THEN =2

1860 IF i>av% AND i<=bd% THEN =3

1870 =4

1880 :

1890 DEF PROCadvice

1900 PROCwin2 : CLS : PRINT TAB (8, 0) ;CHR$ (17) ;

1910 PRINT"Golden Rules for Good Writing";CHR$ (18) '

1920 PRINT"* Use simple words, even in ' serious' writing"

1930 PRINT"* Avoid abstract words and clever jargon"

1940 PRINT"* Keep your style alive - avoid passive verbs"

1950 PRINT"* Watch out for, and uncover, all hidden verbs";

I960 G=GET : ENDPROC

1970 :

1980 REM Shakespeare Bit map

1990 DATA SI, SF000, fiO, fi7, fiFFOO, fiO, filB, filCO, GO

2000 DATA £2A, &60, £0, £54, £30, £0, £AC, £18, &0

2010 DATA £D8, filE, fiO, filAB, fiD, fiO, fil58, £A, fiCOOO

2020 DATA £2AB , £5 , £ 60 OO , £ 358 , £ 6 , fiEO 00 , £EA8 , £5 , £ 60 00

2030 DATA £3558, SF0F6, fiBOOO, £6AA9, £105, £5000, £5558, £7176, fiBOOO

2040 DATA £AAA8, £6165, £5000, £D558, £106, fiBOOO, £AAA8, £85, £6000

2050 DATA £D55C, S8A, fiAOOO, fiAAAC, £68D, £6000, £D55C, filOA, fiAOOO

2060 DATA fiAABE, £78D, £4000, £D56E, £CCF, S8000, £6AAF, £1868, £0

2070 DATA £5517, fiC794, &0, £2A17, £F034, fiO, filEOB, &F872, fiO

2080 DATA £205, &FCE1, £0, £202, fiFFCO, S8000, fi201, fiBFCO, &8000

2090 DATA &100 , &5F80 , &4000 , &100 , £2780 , £4000 , &80 , S1880 , £2000

2100 DATA £40, £3DFE, £2000, £27, £C301, £E000, £18, £0, fiO

2110 :

2120 REM Passive verb partners

2130 DATA are, be, been, being, is, was, were

2140 :

2150 REM Hidden verb endings

2160 DATA sion, tion,ment, ance

86 The Amstrad Notepad

2170 :

2180 REM Style

2190 DATA "Direct and friendly"

2200 DATA "Slightly impersonal"

2210 DATA "Rather stuffy"

2220 DATA "Too impersonal"

2230 DATA "Pompous and bureaucratic"

2240 :

2250 REM Structure

2260 DATA "Well balanced"

2270 DATA "Complex but balanced"

2280 DATA "Complex and unbalanced"

2290 DATA "Overly complex"

2300 DATA "Unacceptably complex"

2310 :

2320 REM Clarity

2330 DATA "Straightforward"

2340 DATA "Fairly clear"

2350 DATA "Hard to follow"

2360 DATA "Quite obscure"

2370 DATA "Incomprehensible"

2380 :

2390 REM Impact

2400 DATA "Very punchy"

2410 DATA "Fairly high"

2420 DATA "Quite low key"

2430 DATA "Barely measurable"

2440 DATA "Nonexistant "

2450 :

2460 DEF FNselect

2470 CALL A%

2480 IF buffer?0 = 0 THBN CLS:=""

2490 R$=""

2500 FOR J%=0 TO 11

2510 IF buffer?J% THEN R$=R$+CHR$ (buffer?J%) ELSE J%=12

2520 NEXT

2530 =R$

2540 :

2550 DEF PROCassemble

2560 FOR PASS=0 TO 2 STEP 2

2570 P%=A%

2580 [

2590 OPT PASS

2600 CALL &B8C3

2610 LD DE, buffer

2620 JR C, found

2630 LD A, 0

2640 LD (DE) ,A

2650 RET

2660 .found

2670 LD B,12

2680 .loop

2690 LD A, (HL)

2700 LD (DE) ,A

2710 INC HL

2720 INC DE

2730 DJNZ loop

2740 RET

2750 .buffer

2760]

Advanced User Guide 87

2770 NEXT

2780 ENDPROC

2790 :

2800 ON ERROR GOTO 2820

2810 VDU 26:CLS:IF ERR=17 THEN CHAIN "AUTO"

2820 REPORT: PRINT" at line ";ERL

2830 PRINT: PRINT "Press [Function] [X] for Notepad Main Menu"

2840 END

2850 :

28 60 DEF PROCassemble2

2870 fopenout=£B8A5

2880 fopenin=SB8A2

2890 foutblock=SB8AB

2900 finblock=SB896

2910 fclose=£B890

2920 :

2930 FOR PASS = 0 TO 2 STEP 2

2940 P%=Z%

2950 [

2960 OPT PASS

2970 :

2980 . scrn_to_di sk

2990 :

3000 CALL map_scrn_in

3010 LD HL,£F000

3020 LD DE,fi8000

3030 LD BC, £1000

3040 LDIR

3050 CALL map_scrn_out

3060 LD HL, filename

3070 CALL fopenout

3080 RET NC

3090 LD HL,&8000

3100 LD BC&1000

3110 CALL foutblock

3120 JP fclose

3130 :

3140 . scrn_from_disk

3150 :

3160 LD HL, filename

3170 CALL fopenin

3180 JR C, froml

3190 LD HL, flag

3200 LD (HL) , 0

3210 RET

3220 :

3230 .froml

3240 :

3250 LD HL, £8000

3260 LD BC, £1000

3270 CALL finblock

3280 CALL fclose

3290 CALL map_scrn_in

3300 LD HL, £8000

3310 LD DE,fiF000

3320 LD BC, £1000

3330 LDIR

3340 CALL map_scrn_out

3350 LD HL.flag

3360 LD (HL) ,1

88 The Amstrad Notepad

3370 RET

3380 :

3390 .map_scrn_in

3400 :

3410 LD A, (&B003)

3420 LD (state) , A

3430 LD A, 67

3440 LD (&B003) ,A

3450 OUT (£13) , A

3460 RET

3470 :

3480 . map_scrn_out

3490 :

3500 LD A, (state)

3510 LD (SB003) , A

3520 OUT (£13) ,A

3530 RET

3540 :

3550 . filename

3560 :

3570 DEFM "STYLE . SCN" : DEFB 0

3580 :

3590 .flag

3600 :

3610 DEFB 0

3620 :

3630 .state

3640 :

3650 DEFB 0

3660]

3670 NEXT

3680 ENDPROC

TIMEZONE.BAS

World Clock

World Time Zones

Use Cur"5o^Keys

London
Thu 16:10:271

Home T i mezone

GMT B Hrs

TIMEZONE£AS, goodness, is that the time?

World clocks of one kind or another are included with most electronic organisers and

even portables these days. They usually look very pretty, with a nice little picture of a

globe spinning around, but their main purpose in life seems to be letting you check at

a pinch whether your contact in Honolulu is likely to be dragged out of warm bed to

give you a frosty reception if you make that ever-so-vital call right now.

Advanced User Guide 89

Although the Notepad has a Time Manager it only supports six time zones and is

text-only. TIMEZONE.BAS aims to improve on this by providing a graphically

attractive world clock, of the sort that wouldn't disgrace even the yuppiest pocket

computer. Complete with 24 time zones placed at strategic spots of worldwide power

and influence (like Noumea), you need never again fret over the current time of day

in Anchorage, Alaska.

As well as showing you the current time in all 24 time zones worldwide, the program

displays the time relative to your current home time, and also relative to GMT. This

implies that you can change the home time zone, and indeed you can, although you'll

have to alter the program to fix it permanently. It's easy to do, and is fully covered in

the line-by-line explanation of the program.

USING THE PROGRAM

Type in the listing and save it as TIMEZONE.BAS before trying it out. Type:

RUN

and the program will take a few seconds to draw a world map, and there's even a

little globe that sits under the program title.

On the right of the screen is the status window, showing the current time zone. This

is always London when you first run the program, though it's easily changed. Below

this is the time in that zone, and initially this will be the same time as held in the

Notepad's system clock.

Below this is a message telling you the relative difference in hours between the home

time and the current time zone, and when the two are the same (as they will be to

start with) it simply says Home Timezone.

Finally, at the foot of the window is another message telling you the relative

difference in hours between the current time zone and GMT (although it doesn't take

into account British Summer Time or any other daylight saving time).

On the map a cross hair is centred over the current time zone, which initially is

London. Pressing [Left] and [Right] moves the cross hair west and east respectively,

through each time zone in turn, updating the information in the status window.

If you want to make another time zone the home time zone, press [Return] at any

time - but see the line-by-line explanation for how to change it permanently from

being London each time you start the program.

HOW IT WORKS

30 Points the Basic error handler to Timezone' s own error handling

routine at line 2150.

90 The Amstrad Notepad

40

50

80-120

180

190

200-220

230

240-260

270

310

350-370

380

420

430

470

480

520

560

570-580

590-610

Sets up the variables and the display.

Loads previously saved screen file from disk, if it exists.

Draw the world map by continent.

Sets both the start time zone and the home time zone, and the

timer to zero. Should you want to make either start zone

different, set them to any number between 1 and 24 (the zones

themselves are listed on lines 1450 - 1680). You will usually

want to keep these both the same as each other, but you don't

have to.

Dimensions the arrays.

Draw a box around the screen and display static strings.

Sets xm and ym to display the globe small, and then fixes the

graphics origin at the bottom-left of the world map area.

Read in all the data.

Draws two vertical lines delineating the world map window.

Displays data for the home time zone and calls PROCscankeys

in an infinite loop.

Read the keyboard, checking for fLeft], [Right] and [Returnl.

Call PROCprevzone, PROCnextzone or PROChomezone

respectively.

If at least one second has elapsed since the last time this line was

visited, resets the timer and forces an immediate display of the

clock for the current zone.

Removes the cross-hair and selects the previous zone in the list

(wrapping to the last zone if already at the start of the list).

Places the cross-hair at the new location, and displays the new

zone's time.

Removes the cross-hair and selects the next zone in the list

(wrapping to the first zone if already at the end of the list).

Places the cross-hair at the new location, and displays the new

zone's time.

Removes the cross-hair, sets the home time zone equal to the

current time zone, replaces the cross-hair and updates the status

window.

Places the cross-hair on the world map.

Extract the GMT offset for the current zone and convert it to a

string, adding a leading + if positive, and the letters Hrs on the

end.

Calculate the time zone's offset from the home time zone by

subtracting the home time zone's GMT offset from the current

Advanced User Guide 91

620-640

650

690-720

730-740

750

760

770

780

790

800

840-890

920-950

990-1030

1050-1310

1350-1370

1380-1410

1450-1680

time zone's GMT offset, and then add a leading + if the result is

positive. If already on the home time zone, just display Home

Timezone.

Print the time zone's name, its offset from the home time zone

and its offset from GMT.

Calculates and prints the current time in that time zone.

Read the day, hour, minutes and seconds from the system clock.

Calculate the day number by counting day% up from one, until

the current day matches an entry in week$0- Whatever day%

equals at that point is the day number.

Calculates the hour in the current time zone by first adding the

current zone's GMT offset, and then by subtracting the home

time zone's GMT offset.

If the hour is less than zero, wraps around to the other end of the

day and decrements the day of the week, wrapping to the last

day of the week if necessary.

If the hour is greater than 24, wraps around to the other end of

the day and increments the day of the week, wrapping to the first

day of the week if necessary.

Converts the new day number to a name.

Constructs the string that holds the time for the current zone

from the day of the week and the time for that zone.

Prints the completed string.

Construct a time string in hh:mm:ss format from the current

values of hour%, mins%, secs% and returns it.

Exclusive-OR a cross-hair at the current city coordinates using

PLOT 96. One call displays the cross-hair, the next (if at the

same coordinates) removes it.

Display a discrete land mass by first reading in the number of

lines to plot (max%) and plotting the start coordinates, followed

by drawing a line to each new coordinate pair read until the

count in p% reaches max%. The multipliers xm and ym are used,

allowing the maps to be scaled as required.

The main continent procedures. Some of these contain more than

one call to PROCisland, where there are several land masses to

be drawn. Occasionally single points are plotted to represent

important islands (Honolulu is plotted as part of PROCamerica).

Draw the three land masses visible on the globe.

Draw the outline of the globe as a polygon with 32 corners.

The time zone data held listed as follows: name, offset in hours

92 The Amstrad Notepad

from GMT, X coordinate of the named location, Y coordinate of

the named location.

1700 Lists the days of the week.

1720-2170 List the land mass data for both the world map and the globe.

2190 Points the Basic error handler to a full error report in the event

of a further error occurring while attempting to run AUTO. This

is in case AUTO isn't present on your Notepad.

2200 Attempts to run the menu program AUTO if the error was

generated by pressing the [Stop] key.

2210 If the error was caused by something else, or if AUTO isn't on

your Notepad, a full error report is displayed.

2220 After the error report the Notepad will be left in BBC Basic, so

this message is displayed to remind users of how to return to the

Notepad main menu.

2250-3170 Assemble the screen saver/loader, which saves a copy of the

screen after everything is drawn the first time, and loads it in

each time thereafter.

2250 Start of procedure that assembles the screen saver/loader, which

saves a copy of the screen after everything is drawn the first

time, and loads it in each time thereafter.

2260-2300 Define the five NC100 jump block routines to be used.

2320-2330 Begin the two-pass assembly and set P% (the assembly

destination pointer) to the start of the previously dimensioned

Z%.

2390 Pages the 16K of RAM with the video memory in at address

&C000.

2400-2430 Copy the contents of video RAM down to &8000.

2440 Puts back the video RAM.

2450-2460 Open a file for saving the screen data.

2470 Returns if unable to open the file.

2480-2500 Save &1000 bytes from &8000 to the file.

2510 Closes the file and exits.

2550-2560 Open a file for reading.

2570-2600 If unable to open the file, set the contents of flag to zero and

returns.

2640-2670 Read the &1000 bytes to location &8000 then close the file.

2680-2730 Map the video RAM 16K block into &C000, copy the &1000

bytes from location &8000 up to &F000 and then put back the

screen RAM.

Advanced User Guide 93

2740-2760

2800-2810

2820-2850

2890-2900

2960

3000

3040

3090-3120

3140-3170

Functions and

PROCsetup

PROCselect

PROCscankeys

PROCprevzone

PROCnextzone

PROChomezone

PROCshowzone

PROCzonetime

PROCcrosshair

PROCisland

PROCamerica

PROCafrica

PROCeurope

PROCgreenland

PROCaustralia

PROCglobe

To indicate successful loading, set the contents of flag to 1 then

return.

Save the current status of the bank switcher for block 4

(&C000-&FFFF).

Map the video RAM into main RAM then returns.

Restore the state of the bank 4 bank switcher and its copy at

&B003.

The file name TIMEZONE.SCN.

The flag to indicate successful file loading.

Temporary storage of the state of the bank switcher.

A function to allocate memory for a string and store the string in

that memory.

A function to allocate space for a byte of data and store the data

in that location.

procedures

Dimensions the arrays, draws the screen boxes, the globe and

prints static text.

Displays data for the home time zone and calls PROCscankeys

in an infinite loop.

Reads the keyboard, checking for [Left], [Right] and [Return].

Selects the next time zone west, wrapping round to the east of

the map in necessary.

Selects the next time zone east, wrapping round to the west of

the map if necessary.

Makes the current time zone the home timezone.

Displays the cross-hair and updates the status window for the

current zone.

Polls the system clock and displays it at the top right adjusted

for the current zone.

Displays or removes a cross-hair at the current zone coordinates.

Draws an isolated land mass on the main world map.

Draws the land mass that makes up North and South America.

Draws the land masses that make up Africa.

Draws the land masses that make up Europe.

Draws the land mass that makes up Greenland.

Draws the land masses that make up the Antipodes.

Draws a circle and the land masses that make up the visible face

of the globe.

94 The Amstrad Notepad

FNnewtime Returns the adjusted time formatted to hh:mm:ss.

Main variables and arrays

city$() Holds the name of each time zone's main city or island.

gmt%() Holds the relative offset of each time zone from GMT.

xpos%() Holds the cross-hair X coordinate of each time zone.

ypos%0 Holds the cross-hair Y coordinate of each time zone.

week$() Holds the names of each day of the week,

xm X coordinate multiplier for controlling width of graphics objects.

ym Y coordinate multiplier for controlling height of graphics

objects.

zone% Current time zone.

home% Home time zone.

tzo$ Time zone offset from home time-zone.

gmt$ Time zone offset from Greenwich Mean Time.

day$ The current day of the week in the home time zone.

hour% The current hour of the day in the home time zone.

mins% The current minute.

secs% The current second.

h$ The hour in the current time zone padded to two digits with

leading zero.

m$ The current minute padded to two digits with leading zero.

s$ The current seconds padded to two digits with leading zero.

time$ The time in the current zone formatted to hh:mm:ss.

The program

10 REM World Time Zones

20 :

30 ON ERROR GOTO 2190

40 DIM Z% &80:VDU 26:CLS

50 PROCassemble:CALL scrn_from_disk: IF ?flag=0 THEN CLS

60 PROCsetup

70 IF ?flag=l THEN GOTO 140

80 PROCamerica

90 PROCgreenland

100 PROCafrica

110 PROCeurope

120 PROCaustralia

130 CALL scrn_to_disk

140 PROCselect

150 END

160 :

170 DEF PROCsetup

180 zone%=12:home%=12:TIME=0

Advanced User Guide 95

190 DIM city$ (24) ,gmt% (24) ,xpos% (24) ,ypos% (24) ,weok$ (7)

200 MOVE 0,0:DRAW 479,0:DRAW 479,63:DRAW 0,63:DRAW 0,0

210 PRINT TAB(4,1);CHR$ (17); "World Time Zones" ;CHR$ (18)

220 PRINT TAB(4, 6) ;CHR$ (17) ; "Use Cursor Keys";CHR$ (18) :VDD 28,56,6,76,1

230 xm=0.8:ym=0.8:VDU 29, 58; 14; :PROCglobe :xm=l . 9 : ym=l . 4 :VDO 29,148,0;

240 RESTORE 1450: FOR z%=l TO 24

250 READ city$(z%) ,gmt%(z%) ,xpos%(z%) ,ypos%(z%)

260 NEXT:FOR d%=l TO 7:READ week$ (d%) :NEXT

270 MOVE 0,0:DRAW 182,0:DRAW 182,64:DRAW 0,64:DRAW 0,0

280 ENDPROC

290 :

300 DEF PROCselect

310 PROCshowzone : REPEAT : PROCscankeys : UNTIL FALSE

320 ENDPROC

330 :

340 DEF PROCscankeys

350 i%=INKEY(0) : IF i%=242 PROCprevzone : ENDPROC

360 IF i%=243 PROCnextzone : ENDPROC

370 IF i%=13 SOUND 1 , 1 , 100, 1 : PROChomezone : ENDPROC

380 IF TIME>100 THEN TIME=0 : PROCzonetime

390 ENDPROC

400 :

410 DEF PROCprevzone

420 PROCcrosshair : zone%=zone%-l : IF zone%=0 zone%=24

430 PROCshowzone

440 ENDPROC

450 :

460 DEF PROCnext zone

470 PROCcrosshair : zone%=zone%+l : IF zone%=25 zone%=l

480 PROCshowzone

490 ENDPROC

500 :

510 DEF PROChomezone

520 PROCcrosshair : home%=zone% : PROCshowzone

530 ENDPROC

540 :

550 DEF PROCshowzone

560 CLS: PROCcrosshair

570 IF gmt% (zone%) >0 gmt$="+"+STR$ (gmt% (zone%)) ELSE

gmt$=STR$ (gmt% (zone%))

580 gmt$="GMT "+gmt$+" Hrs"

590 tzo%=gmt% (zone%) -gmt% (home%)

600 IF tzo%>0 tzo$="+"+STR$ (tzo%) ELSE tzo$=STR$ (tzo%)

610 IF tzo%<>0 tzo$="Home Time "+tzo$+" Hrs" ELSE tzo$="Home Timezone"

620 PRINT TAB(ll-LEN(city$ (zone%)) /2, 0) ;CHR$ (17) ; city$ (zone%) ;CHR$ (18)

630 PRINT TAB(11-LEN (tzo$) /2, 3) ;tzo$

640 PRINT TAB(ll-LEN(gmt$)/2,5) ;gmt$;

650 PROCzonetime

660 ENDPROC

670 :

680 DEF PROCzonetime

690 day$=LEFT$ (TIME$,3)

700 hour%=VAL(MID$ (TIME$,17,2))

710 mins%=VAL(MID$(TIME$,20,2))

720 secs%=VAL(MID$ (TIME$,23,2))

730 day%=0 : REPEAT : day%=day%+l

740 UNTIL week$ (day%)=day$

750 hour%=hour%+gmt% (zone%) -gmt% (home%)

760 IF hour%<0 hour%=24+hour% : day%=day%-l : IF day%=0 day%=7

770 IF hour%>23 hour%=hour%-24 : day%=day%+l : IF day%=8 day%=l

96 The Amstrad Notepad

780 day$=week$ (day%)

790 time$=day$+CHR$ (32) +FNnewtime

800 PRINT TAB(ll-LEN(time$)/2,l) ;time$;

810 ENDPROC

820 :

830 DEF FNnewtime

840 h$=STR$ (hour%) :m$=STR$ (mins%) :s$=STR$ (secs%)

850 h$=STRING$ (2-LEN (h$) , "0")+h$

860 m$=STRING$ (2-LEN (m$) , "0")+m$

870 s$=STRING$ (2-LEN (s$) , "0")+s$

880 time$=h$+" : "+m$+" : "+s$

890 =time$

900 :

910 DEF PROCcrosshair

920 MOVE xpos% (zone%) *xm, 0

930 PLOT 6,xpos% (zone%) *xm, 48*ym

940 MOVE 0, ypos% (zone%) *ym

950 PLOT 6, 96*xm, ypos% (zone%) *ym

960 ENDPROC

970 :

980 DEF PROCisland

990 READ max%

1000 READ x%,y%:MOVE x%*xm, y%*ym

1010 FOR p%=l TO max%

1020 READ x%,y%:DRAW x%*xm, y%*ym

1030 NEXT: ENDPROC

1040 :

1050 DEF PROCamerica

1060 RESTORE 1720 :PROCisland

1070 PLOT 69,l*xm, 25*ym

1080 PLOT 69, 2*xm, 24*ym

1090 ENDPROC

1100 :

1110 DEF PROCafrica

1120 RESTORE 1780 : PROCisland

1130 RESTORE 1830 : PROCisland

1140 PLOT 69, 40*xm, 29*ym

1150 ENDPROC

1160 :

1170 DEF PROCeurope

1180 RESTORE 1860 :PROCisland

1190 RESTORE 2000 : PROCisland

1200 RESTORE 2100 : PROCisland

1210 ENDPROC

1220 :

1230 DEF PROCgreenland

1240 RESTORE 1960 : PROCisland

1250 ENDPROC

1260 :

1270 DEF PROCaustralia

1280 RESTORE 2030 : PROCisland

1290 RESTORE 2070 : PROCisland

1300 PLOT 69, 95*xm, ll*ym

1310 ENDPROC

1320 :

1330 DEF PROCglobe

1340 IF ?flag=l THEN ENDPROC

1350 RESTORE 2130 : PROCisland

1360 RESTORE 2140 : PROCisland

1370 RESTORE 2150 : PROCisland

dpmQudSfipdouvApy 16

'SZ'08'EZ'Z8'ZZ'Z8'TZ'T8'SZ'SZ.'ZZ'EZ.'TZ'EZ.'0Z'TZ.'9Z'69'*.Z'E9VIVO068T

SZ'99

'9Z'S9'EZ'Z9'£Z'8S'8Z'8S'8Z'i.S'6Z'Z.S'6Z'09'TE'6S'TE'LS'OE'LSVIVO0881

6Z'9S

'8Z'9S'IE'SS'TE'TS'6Z'£S'8Z'ES'IE'OS'IE'8»'6Z'Z.fr'6Z'Sfr'IE'SfrVIVO0Z.8T

S8VIVO0981

edoanaW3H0S8I

II'Z9'EI'Z9'SI'fr9'»I'»9'II'E9'TT'Z9VIVO0fr8T

SVIVO0E8I

aFOSBBcpBWH3H0Z8T

6Z'ISVIVO0181

Z.Z'TS'9Z

'ES'8Z'frS'Z.Z'ES'Z.Z'8S'TZ'09'IZ'E9'Z.T'6S'ST'09'6'8S'Z.'frS'6'frSVIVO0081

ex'zs

'SI'ZS'LX'IS'61'IS'OZ'OS'61'Sfr'IZ'Efr'LZ'frfr'Z.Z'Sfr'8Z'Sfr'63'ISVIVO06Z.I

EZVIVO08Z.T

EOiajYW3H0Z.Z.T

frE'0'Z.E'E'*E'0T'6Z'TT'*Z'ST'TZ'8T'ZZ'0Z'EZ'EZ'0Z'frZVIVO09Z.T

Z.I'EZ

'ZT'Z.Z'9'SZ'Z'9Z'Z'8Z'S'8Z'9'OE'Z,'ZE'01'EE'ZT'Z.E'frT'8E'/.I'Z.EVIVO0SZ.T

Z.T'EE

'6T'£E'TZ'9Z'frZ'l'Z'frZ'0Z'Z.Z'0Z'Z.Z'ZZ'9Z'frZ'8Z'£Z'TE'Z.Z'T£'6ZVIVO0frZ.T

EE'IE'SE

'6Z'Z.E'SZ'SE'9Z'EE'frZ'9E'OZ'Ot'EZ'6E'SI'Tfr'6'6E'Z.'0*'S'6E'0VIVO0EZ.T

EfrVIVO0ZZ.T

BOTjeuiYq^nospupq^aoNW3H0TZ.T

uns'5«S'T^'nill'p©M'eni'uowVIVO00Z.T

sApa*s»MW3H0691

'S6'ZI'uo^BuTIiaMVIVO0891

II'S6'II'P»umoNYIYa0Z.9T

Z.'E6'0I'^»«P^SVIVO0991

0E'I6'6'o^xoiVIVO0S9I

9Z'E8'8'6"°Xfiu°HVIVO0fr9T

EZ'8Z.'L'XO^BubhVIVO0E9I

9Z'SZ.'9'***qaVIVO0Z9I

9Z'69'S'Tq°"*XVIVO0191

9Z'\9'fr'T*qnaVIVO0091

SZ'09'E'UBpperVIVO06SI

Z.Z'8S'Z'°^T«0VIVO08SI

Z£'6fr'X's-fi-ea.VIVO0Z.ST

E'8'0'uopuoiVIVO09SI

6Z'Ofr'I-'sajozvVIVO0SSI

9I'Z.E'Z-'33TO»HVIVOOfrST

ZI'SE'E-'oaT^u^r*»P©thVIVO0ESI

0Z'8Z'fr-'SHOMH3viva0ZST

OE'SZ'S-'^OA»SNVIVO0TST

ZE'0Z'9-'°£*OTqDviva00SI

IE'9T'Z.-'^SAueaVIVO06*1

Z.Z'ET'8-'sbibBuvsoiVIVO08H

Z.E'E'6-'sfiPJoqouvVIVO0LVT

frZ'Z'OI-'ninTOUOHVIVO09frT

sz'i'ii-'Abmptwvivaosn

v^vqbuozsuitxW3HOfrfrT

:OEfrT

DOHaatiaozn

IX3N0TH

»J^»(ZZ+(02*(«)SOO))'»«*(6I+(ZZ*(*)NIS))MVtfa00H

ZE/id*zaaisia*zoio=«Hoa06EI

u^*(ZZ+(0Z*(0)SOD))'unc*(6T+(ZZ*(0)NIS))3A0W08EI

9Z'E8

86 pvdpjOMpvujsiuy^±

00085'aaaioifrz

000.35'1HQ1OOfrZ

ujuio8deuiTTVO06EZ

__:0Q£Z

XSTPoq.MOB-0Z.E2

■09EZ

ssvaiaoOSEZ

]otzz

%Z=%dozzz

zaaiszoio=ssvaaoaozez

:OIEZ

068H5=ssotojOOEZ

968H5=^ooTquTJ06ZZ

HV8a9=^ooiq^noj08ZZ

ZY8a3=uxuedoj0Z.ZZ

SY8a5=^nouedoj09ZZ

axquiessBoottdaaaOSZZ

:OfrZZ

dN30E22

„nuswujbwpBde^otiaoj[x][uof^ounj]sseaauiNIHa:jiNIHaOZZZ

THa-'ueuTTV.,INIHa:iHOdaHOIZZ

.■oinv..niyhoN3Hiz.i=aaaai:sao:9ZnaAoozz

oizzoiof)aoaaano06iz

:08IZ

8Z'8£'0E'SE'82'9E'S2'SE'82'2E'SZ'EE'EZYIYO0Z.IZ

SE'frZ

'9E'0Z'SE'9I'SE'6'Z£'9'6Z'S'9Z'6'9Z'ZI'Z.Z'SI'9Z'9I'SZ'Z.I'IZ'0ZYIYd09IZ

6I'SZ

'0Z'8Z'frZ'6Z'8Z,6Z'0E'0E'Z£'IE'0E'IE'8Z'6Z'SZ'IE'frZ'Z.E'6Z,8ZYIYdOSIZ

0*'9I'Z.E'SI'9E'II'9E'9'EYIYOOUZ

6Z'0'EZ'S'IZ'S'9I'8'SI'9'8'fr'SYIYdOEIZ

©qoiswaaOZIZ

IE'16'IE'26'OE'Z6'82'68'6Z'68'OE'16'IE'16YIYdOIIZ

9YiYaooiz

und^rwaa060Z

V'96'I'Z6'Z'Z6'fr'S6'Z.'96YIYd080Z

YIYd0Z.0Z

pu«T*ez*»NWZH090Z

Z.'*8'8'S8'6'98'6'Z.8'8'88'8'68'9'06'9'Z6'8'*6'01^6'ZI'Z6'H'I6YIYdOSOZ

ET'I6'ZI

'06'EI'88'frI'68'SI'Z.8'EI'98'frI'S8'ZI'fr8'II'Z8'6'E8'8'E8'Z.'fr8YIYd0*0Z

EZvivaOEOZ

PTi«^snvwaaOZOZ

EE'9fr'9E'Z.fr'frE'8fr'EE'9frYIYdOIOZ

EYIYd000Z

uip^T^awaa066T

9E'ZE'9E'frE'8E'Z.E'6E'Zfr'Ofr'Ofr'Ifr'Efr'Zfr'Zfr'frfr'fr*VIVO0861

frfr'Ofr

'Sfr'Ifr'frfr'Z.E'Sfr'8E'Efr'frE'Efr'0E'I*'8Z'0*'6Z'Ifr'0E'6E'EE'9E'ZEYIYa0Z.6I

8TYIYa0961

pu«-[ueoJ3W3H0S6T

TE'Sfr'TE'Z.fr'ZE'Z.fr'frE'OS'SE'OS'SE'TS'EE'ZS'EE'ES'SE'frSYIYO0*61

9E'Z.S

'9E'SS'LZ'frS'8£'9S'6E'SS'/.£'ZS'9E'ES'frE'ZS'9E'IS'SE'6fr'Z.E'6*YIYO0E6I

8E'IS

'Ofr'ES'Ifr'Z.S'6E'09'8E'09'8E'8S'Z.E'09'6E'99'6E'EZ.'Z.E'SZ.'6E'SZ.YIYO0Z6I

Zfr'18

'Ofr'E8'6E'I8'8E'68'6E'I6'8E'96'ZE'96'EE'S6'SE'96'Z.E'S6'9E'Z6YIYO0161

9E'06

'SE'68'frE'06'ZE'06'ZE'88'IE'Z.8'6Z'88'8Z'Z.8'IE'S8'0£'*8'Z.Z'S8YIYd006T

Advanced User Guide 99

2420 LD BC&1000

2430 LDIR

2440 CALL map_scrn_out

2450 LD HL, filename

2460 CALL fopenout

2470 RET NC

2480 LD HL, &8000

2490 LD BC&1000

2500 CALL foutblock

2510 JP fclose

2520 :

2530 .scrn_from_di sk

2540 :

2550 LD HL, filename

2560 CALL fopenin

2570 JR Cfroml

2580 LD HL, flag

2590 LD (HL) , 0

2600 RET

2610 :

2620 .froml

2630 :

2640 LD HL, &8000

2650 LD BC&1000

2660 CALL finblock

2670 CALL fclose

2680 CALL map_scrn_in

2690 LD HL, &8000

2700 LD DE, &F000

2710 LD BCfilOOO

2720 LDIR

2730 CALL map_scrn_out

2740 LD HL,flag

2750 LD (HL) ,1

2760 RET

2770 :

2780 . map_scrn_in

2790 :

2800 LD A, (SB003)

2810 LD (state) ,A

2820 LD A, 67

2830 LD (&B003) ,A

2840 OUT (&13) ,A

2850 RET

2860 :

2870 . mapscrn_out

2880 :

2890 LD A, (state)

2900 LD (&B003) ,A

2910 OUT (£13) ,A

2920 RET

2930 :

2940 .filename

2950 :

2960 DEFM "TIMEZONE . SCN" : DEFB 0

2970 :

2980 .flag

2990 :

3000 DEFB 0

3010 :

100 The Amstrad Notepad

3020 .state

3030 :

3040 DEFB 0

3050]

3060 NEXT

3070 ENDPROC

ZAP.BAS

Z80 disassembler

0004 30 30 JR NC, 50834 00
0006 52 LD D,0 R
S007 1B DEC DE ♦
0008 2fl 62 36 LD HL,(*3662) *b6O00B 30 57 "•"

000D 21 00 00
Escape at I ine 520

m

eui
i

ZAP.BAS, peek under your Notepad's bonnet.

An essential tool for every assembly language programmer is a disassembler. With

one you can check that programs you have written have assembled correctly or get a

feel for how other programs work. In particular, if you wish to examine code in the

Notepad's ROMs in order to, perhaps, call undocumented routines directly yourself

(only recommended if you make careful checks to ensure that a new version of the

firmware has not changed or moved such a routine), you can adapt the screen saving

functions of programs such as COOKIE.BAS or TIMEZONE.BAS to page a selected

ROM in (rather than the video RAM) and save a copy to disk ready for disassembly.

Note that if you do disassemble parts of the ROMs you may only use the information

you obtain to call the routines in the ROMs. You MAY NOT copy and/or modify any

of the routines and incorporate them in your own programs as they are protected by

copyright.

ZAP.BAS was written to be as easy to understand as possible and therefore a brute

force method was used for its data storage. Rather than storing the main assembler

mnemonics such as ADC or LD, and then doing some complicated calculations to

determine the various combinations such as ADC A or ADC B and LD HL,A or LD

(DE),&1234, every single possible combination is stored on its own data line.

This means that the program only has to check whether the current opcode sequence

is one, two, three or four bytes, noting the opcodes against all the sequences stored

next to the accompanying mnemonics.

Advanced User Guide 101

USING THE PROGRAM

Type in the listing and save it as ZAP.BAS before trying it out, then type:

RUN

The screen will then clear and you will see Please wait while the program reads in all

its data. This takes about eight seconds, after which the familiar File Selector appears,

and you should now choose a file you wish to disassemble. If you wish you can

choose non-machine code files too, just to test the program, but the disassembly will

be completely nonsensical.

Once a file has been selected you are then asked for the ORG address. This should be

the exact address to which the first byte of the code you are disassembling was

originally assembled. For example, if you were to disassemble ROM 5 which is the

BBC Basic Rom, you should give an ORG address of &C000, which is the area of

memory to which BBC Basic is paged in when you call it up.

Incidentally, the reason Zap reads its input from a file is because the program is

rather large and, being in BBC Basic, it would not be easy to allow it to disassemble

from ANY RAM address in ANY RAM or ROM. Therefore, it is left up to you to

save any areas of memory you wish to assemble out to disk first.

Of course, the program could have been written completely in assembler itself and it

would then have been blindingly fast. However, the Basic version is more than

sufficient for examining code segments.

HOW IT WORKS

30-70

80-150

Declare the main variables.

Dimension the arrays.

Assembles the machine code for the File selector.

Reads the mnemonic and opcode data.

Calls the File selector.

Asks for the ORG address

Opens the selected file for reading.

Gets the first opcode.

Is it a one-byte opcode? If yes, GOTO done.

Gets the second opcode

Is it one of the two-byte family of opcodes? If yes, GOTO done.

Gets the third opcode

Is it one of the three-byte family of opcodes? If yes, GOTO

done.

Gets the fourth opcode

170

180

190

200

210

250

260

270

280-300

310

320-330

340

102 The Amstrad Notepad

350-370 Is it one of the four-byte family of opcodes? If yes, GOTO done.

380 If we got here then we found an unrecognised opcode. So it is

either data or an undocumented opcode.

390 Continues until the end of the file.

400410 Finished so close the file and exit.

430-470 Is it a one-byte opcode? If yes, print the mnemonic.

490-530 Is it a type-one two-byte opcode? If yes, print the mnemonic.

550-590 Is it a type-two two-byte opcode? If yes, print the mnemonic.

610-670 Is it a type-three two-byte opcode? If yes, print the mnemonic.

690-730 Is it a type-one three-byte opcode? If yes, print the mnemonic.

750-790 Is it a type-two three-byte opcode? If yes, print the mnemonic.

810-850 Is it a type-one four-byte opcode? If yes, print the mnemonic.

870-910 Is it a type-two four-byte opcode? If yes, print the mnemonic.

930-970 Is it a type-three four-byte opcode? If yes, print the mnemonic.

990-1100 Print a given mnemonic, replacing any asterisks in the original

with the passed values which are the actual opcodes.

1120-1320 Print the values of opcodes 1, 2, 3 and 4 in hexadecimal.

1340-1440 Read the opcodes and mnemonic data into the arrays.

1460-1490 Read the hexadecimal data, preface each with an & to make it

useable by the EVAL statement then return its value.

1510-1580 Call the firmware File selector and return the name of any file

selected.

1600-1830 Assemble the File selector calling code.

1890-3900 Single-byte opcode and mnemonic data.

3940-7130 Type-one two-byte opcode and mnemonic data.

7170-7340 Type-two two-byte opcode and mnemonic data.

7380-7430 Type-three two-byte opcode and mnemonic data.

7470-7720 Type-one three-byte opcode and mnemonic data.

7760-8230 Type-two three-byte opcode and mnemonic data.

8270-8280 Type-one four-byte opcode and mnemonic data.

8320-8430 Type-two four-byte opcode and mnemonic data.

8470-9080 Type-three four-byte opcode and mnemonic data.

Functions and procedures

PROCassemble Assembles the File selector calling code.

PROCread_data Reads the opcode and mnemonic data into the arrays.

PROCj Prints the first opcode value in hexadecimal.

Advanced User Guide 103

PROCk Prints the second opcode value in hexadecimal.

PROC1 Prints the third opcode value in hexadecimal.

PROCm Prints the fourth opcode value in hexadecimal.

PROCmnemon Prints the mnemonic for the given opcode.

FNchk_one Checks for a one-byte opcode.

FNchkjwoa Checks for a type-one two-byte opcode.

FNchkjwob Checks for a type-two two-byte opcode.

FNchk_twoc Checks for a type-three two-byte opcode.

FNchk_threea Checks for a type-one three-byte opcode.

FNchk_threeb Checks for a type-two three-byte opcode.

FNchk_foura Checks for a type-one four-byte opcode.

FNchk_fourb Checks for a type-two four-byte opcode.

FNchk_fourc Checks for a type-three four-byte opcode.

FNread Reads the hexadecimal text data and converts to a number.

FNselect Prompts the user for a file using the File selector.

Main variables and arrays

start% The ORG address of the code being disassembled.

one% Number of one-byte opcodes.

twoa% Number of type-one two-byte opcodes.

twob% Number of type-two two-byte opcodes.

twoc% Number of type-three two-byte opcodes.

threea% Number of type-one three-byte opcodes.

threeb% Number of type-two three-byte opcodes.

foura% Number of type-one four-byte opcodes.

fourb% Number of type-two four-byte opcodes.

fourc% Number of type-three four-byte opcodes.

A% Space for the File selector machine code.

al% One-byte opcode array.

bl% Type-one two-byte opcode array.

b2% Type-two two-byte opcode array.

b3% Type-three two-byte opcode array.

cl% Type-one three-byte opcode array.

c2% Type-two three-byte opcode array.

dl% Type-one four-byte opcode array.

d2% Type-two four-byte opcode array.

d3% Type-three four-byte opcode array.

104 The Amstrad Notepad

d4% Type-four four-byte opcode array.

al$ One-byte mnemonic array.

bl$ Type-one two-byte mnemonic array.

b2$ Type-two two-byte mnemonic array.

b3$ Type-three two-byte mnemonic array.

cl$ Type-one three-byte mnemonic array.

c2$ Type-two three-byte mnemonic array.

dl$ Type-one four-byte mnemonic array.

d2$ Type-two four-byte mnemonic array.

13$ Type-three four-byte mnemonic array.

d4$ Type-four four-byte mnemonic array.

file$ The file name returned by the File selector,

handle File handle of the opened file.

chk% This is set and returned by the chk_... functions if one of them is

successful in matching with the current opcode.

oldstart% The previous value of start% before the current opcode was

tested. This allows start% to be incremented as each new byte is

read in, while oldstart% retains the correct address of the start of

the current opcode.

J% Opcode one. (Also used as a temporary loop counter during

initialisation).

K% Opcode two (if there is one).

L% Opcode three (if there is one).

M% Opcode four (if there is one).

C%,X% Temporary loop counters.

flag% If set, PROCmnemonic knows it need not search for any

asterisks to replace with values, as there are none.

posl% The position of the first asterisk if there are two of them in a

mnemonic.

pos2% The position of the asterisk if there is just one in a mnemonic.

strl$,str2$ Left and right halves of a mnemonic having the asterisk stripped

from it.

text$ The mnemonic, both before and after asterisk replacement.

B$ A string holding a four-character number representing the value

of oldstart%, the current offset from the ORG address.

Z$ The two-byte hex string printed by PROCs j, k, 1 and m.

R$ Temporary string created to read the hexadecimal data into the

arrays via an EVAL command.

Advanced User Guide 105

buffer Holds the file name obtained by the file selector in the machine

code section of the program (part of the A% array).

found Label in the machine code section from which point a file has

been selected.

loop Label in the machine codes section where a loop transfers the

file name to a known location addressable from Basic.

The program

10 CLS: PRINT "Z80 Disassembler"

20 PRINT:PRINT "Please wait..."

30 start%=0

40 one%=202

50 twoa%=320:twob%=18:twoc%=6

60 threea%=2 6 : threeb%=4 8

70 foura%=2 : fourb%=12 : fourc%=62

80 DIM A% 40

90 DIM al% one%, al$ (one%)

100 DIM bl% twoa%,b2% twob%,b3% twoc%,bl$ (twoa%) ,b2$ (twob%) ,b3$ (twoc%)

110 DIM bla% twoa%

120 DIM cl% threea%,c2% threeb% , cl$ (threea%) , c2$ (threeb%)

130 DIM c2a% threeb%

140 DIM dl% foura%,d2% fourb%,d3% fourc%, dl$ (foura%) , d2$ (fourb%) ,

d3$ (fourc%)

150 DIM dla% £oura%,d2a% fourb%,d3a% fourc%,d3b% fourc%

160 :

170 PROCassemble

180 PROCread_data

190 file$=FNselect : IF file$="" THEN END

200 I$="0": PRINT "Disassembling ",,,,; file$;"""": PRINT : INPUT "Please

enter ORG address: "I$:IF LEN(I$)>0 THEN start %=EVAL 1$

210 PRINT :handle=OPENIN(file$)

220 :

230 REPEAT

240 chk%=0 : oldstart%=start%

250 J%=BGET #handle: start%=start%+l

260 IF FNchk_one THEN GOTO 390

270 K%=BGET #handle : start%=start%+l

280 IF FNchk_twoa THEN GOTO 390

290 IF FNchk_twob THEN GOTO 390

300 IF FNchk_twoc THEN GOTO 390

310 L%=BGET #handle: start%=start%+l

320 IF FNchk_threea THEN GOTO 3 90

330 IF FNchk_threeb THEN GOTO 390

340 M%=BGET #handle : start%=start%+l

350 IF FNchk_foura THEN GOTO 390

360 IF FNchk_fourb THEN GOTO 390

370 IF FNchk_fourc THEN GOTO 390

380 PRINT "Unrecognised opcode"

390 UNTIL EOF #handle

400 CLOSE #handle

410 PRINT: END

420 :

430 DEF FNchk_one

440 FOR X%=0 TO one%-l

450 IF J%=al%?X% THEN PROCj:PRINT SPC(9);:

106 The Amstrad Notepad

PROCmnemon (al$ (X%) ,0,0,0,2) :VDU 27, J%:chk%=l

460 NEXT

470 =chk%

480 :

490 DEF FNchk_twoa

500 FOR X%=0 TO twoa%-l

510 IF J%=bl%?X% AND K%=bla%?X% THEN PROC j : PROCk: PRINT SPC(6);:

PROCmnemon (bl$ (X%) ,0,0,0,2) :VDU 27, J%, 27, K% : chk%=l

520 NEXT

530 =chk%;

540 :

550 DEF FNchk_twob

560 FOR X%=0 TO twob%-l

570 IF J%=b2%?X% THEN PROCj : PROCk : PRINT SPC(6);:

PROCmnemon (b2$ (X%) ,1,K%,0,2) :VDU 27, J%, 27, K% : chk%=l

580 NEXT

590 =chk%

600 :

610 DEF FNchk_twoc

620 offset=K%:IF K%>129 THEN offset=- (K%-129)

630 IF (oldstart%+offset) <0 THEN offset=oldstart%

640 FOR X%=0 TO twoc%-l

650 IF J%=b3%?X% THEN PROC j : PROCk : PRINT SPC(6);:

PROCmnemon(b3$ (X%) , 1, oldstart%+offset , 0, 4) :VDU 27, J%, 27 , K% : chk%=l

660 NEXT

670 =chk%

680 :

690 DEF FNchk_thraea

700 FOR X%=0 TO threea%-l

710 IF J%=cl%?X% THEN PROC j : PROCk :PROCl : PRINT SPC(3);:

PROCnuiemon(clS (X%) , 1,K%+L%*fil00, 0, 4) :VDU 27 , J%, 27 , K%, 27 , L% : chk%=l

720 NEXT

730 =chk%

740 :

750 DEF FNchk_threeb

760 FOR X%=0 TO threeb%-l

770 IF J%=c2%?X% AND K%=c2a%?X% THEN PROC j : PROCk :PR0C1 : PRINT

SPC(3) ; :PROCmnemon(c2$ (X%) ,1,L%,0,2) :VDU 27, J%, 27, K%, 27, L% : chk%=l

780 NEXT

790 =chk%

800 :

810 DEF FNchk_foura

820 FOR X%=0 TO foura%-l

830 IF J%=dl%?X% AND K%=dla%?X% THEN PROC j : PROCk : PROC1 : PROCm:

PROCmnemon(dl$ (X%) ,2,L%,M%,2) :VDU 27, J%, 27, K%, 27, L%, 27, M% : chk%=l

840 NEXT

850 =chk%

860 :

870 DEF FNchk_fourb

880 FOR X%=0 TO fourb%-l

890 IF J%=d2%?X% AND K%=d2a%?X% THEN PROC j : PROCk :PROCl : PROCm:

PROCmnemon (d2 $ (X%) , 1 , L%+M%* fi 100,0,4):VDD 27,J%,27,K%,27,L%,27,M%: chk%=l

900 NEXT

910 =chk%

920 :

930 DEF FNchk_fourc

940 FOR X%=0 TO fourc%-l

950 IF J%=d3%?X% AND K%=d3a%?X% AND M%=d3b%?X% THEN PROC j : PROCk : PROC1 :

PROCm : PROCmnemon (d3$ (X%) , 1 , L% , 0 , 2) : VDU 27 , J% , 27 , K% , 27 , L% , 27 , M% : chk%=l

960 NEXT

Advanced User Guide 107

0")+strl$

0")+str2$

970 =chk%

980 :

990 DEF PROCmnemon (text$, flag%, vall%, val2%, size%)

1000 IF flag%=0 THEN GOTO 1090

1010 posl%=0 :po82%=0

1020 FOR C%=1 TO LEN(text$)

1030 IF MID$ (toxt$,C%,l)="*" THEN posl%=pos2% : pos2%=C%

1040 NEXT

1050 «trl$=STR$ (vall%) : strl$="S"+STRING$ (size%-LEN (strl$)

1060 str2$=STR$ (val2%) : str2$="£"+STRING$ (size%-LEN (str2$)

1070 text$=LEFT$ (text$,pos2%-l)+strl$+RIGHT$ (text$, LEN (text$) -pos2%)

1080 IF flag%=2 THENtext$=LEFT$ (text$, posl%-l) +str2$+RIGHT$

(text$, LEN (text$)-posl%)

1090 PRINT text$;:VDU 31,40,VPOS

1100 ENDPROC

1110 :

1120 DEF PROCj

1130 B$=STR$ (oldetart%) :B$=STRING$ (4-LEN(B$) , "0")+B$

1140 PRINTrPRINT ;B$;SPC(2);

1150 Z$=STR$ (J%):IF J%<16 THEN Z$="0"+Z$

1160 PRINT ;Z$;" ";

1170 ENDPROC

1180 :

1190 DEF PROCk

1200 Z$=STR$ (K%):IF K%<16 THEN Z$="0"+Z$

1210 PRINT ;Z$;" ";

1220 ENDPROC

1230 :

1240 DEF PROC1

1250 Z$=STR$ (L%):IF L%<16 THEN Z$="0"+Z$

1260 PRINT ;Z$; " ";

1270 ENDPROC

1280 :

1290 DEF PROCm

1300 Z$=STR$ (M%):IF M%<16 THEN Z$="0"+Z$

1310 PRINT ;Z$; " ";

1320 ENDPROC

1330 :

1340 DEF PROCread_data

1350 FOR J%=0 TO one%-l : al%?J%=FNread:READ al$(J%):NEXT

1360 FOR J%=0 TO twoa%-l :bl%?J%=FNread:bla%?J%=FNread:READ bl$(J%):NEXT

1370 FOR J%=0 TO twob%-l :b2%?J%=FNread:READ b2$(J%):NEXT

1380 FOR J%=0 TO twoc%-l :b3%?J%=FNread:READ b3$(J%):NEXT

1390 FOR J%=0 TO threea%-l : cl%?J%=FNread:READ cl$(J%):NEXT

1400 FOR J%=0 TO threeb%-l:c2%?J%=FNread:c2a%?J%=FNread:READ

c2$ (J%) :NEXT

1410 FOR J%=0

1420 FOR J%=0

1430 FOR J%=0

READ d3$(J%):NEXT

1440 ENDPROC

1450 :

1460 DEF FNread

1470 READ R$

1480 R$="S"+R$

1490 =EVAL R$

1500 :

1510 DEF FNselect

1520 CALL A%

1530 IF buffer?0 = 0 THEN CLS:=""

TO foura%-l:dl%?J%=FNread:dla%?J%=FNread:READ dl$(J%):NEXT

TO fourb%-l:d2%?J%=FNread:d2a%?J%=FNread:READ d2$(J%):NEXT

TO fourcl-1 : d3 % ?J%=FNread : d3a% ?J%=FNread : d3b% ?J%=FNread :

801 pvddjOMpvuisiuy9ifx

1HONI'EZVIVOOEIZ

vaa'aivivaoziz

aoaa'aivivaouz

aoni'oivivaooiz

aaoaa'aiviva060Z

.,(aa)'van,,'vivivaosoz

..3a"ihaav..'6ivivaoloz

VTH'f.1VIVO0902

aoaa'sivivaosoz

aoni'hvivaofroz

aaoni'eivivaoeo2

..v'(aa)ai„'z\vivaozoz

voaa'aovivaoioz

ooaa'aovivaoooz

0ONI'OOVIVO0661

oaoaa'aoviva0861

.i(oa)'vai..'vovivaoz.6i

..oa'iHaov,.'60viva0961

...av'avxa.,'sovivaos6i

VOTH'^.0VIVO0fr6I

aoaa'soviva0E6i

aoNi'froviva0Z6I

OHONI'EOVIVO016I

..v'(oa)arr.,'zovivaoo6i

aoN'ooviva0681

:0881

a^XqaxBufsW3a0Z.8I

:0981

soxuouiauuipussepoouoponj^suiW3H0S8I

:0fr8I

OOHdONa0E8I

IX3N0Z8I

[0T8T

aejjriq-0081

I3H06/.T

dooxZNTO08^1

aaonioLLi

1UONI09LI

v(aa)aiosz.i

(lU)'V(TlOfrZ.1

doof0£LZ

21'HQ1OZLX

punoj"0IZ.I

ianooz.1

v'(aa)an0691

O'V010891

punoj'oHT0J.9I

aajjnq'aa010991

E0885TIVO0S9I

SSVdIdO0*91

]0E9I

%V=%d0Z9I

zaaiszoio=ssvanoa019i

siqmBssHooHaaaa0091

:06SI

$H=08SI

ixaNoz.si

ZI=%rasia(%J?6:i©Jjnq)$HHO+$H=$HN3HI%rt3Bjjnqji09SI

1101o=%raoaossi

,...=$HOfrSI

Advanced User Guide 109

2140 DATA 24 INC H

2150 DATA 25 DEC H

2160 DATA 27 DAA

2170 DATA 29, "ADD HL,HL"

2180 DATA 2B, DEC HL

2190 DATA 2C, INC L

2200 DATA 2D, DEC L

2210 DATA 2F, CPL

2220 DATA 33, INC SP

2230 DATA 34, INC (HL)

2240 DATA 35, DEC (HL)

2250 DATA 37, SCF

2260 DATA 39, "ADD HL,SP"

2270 DATA 3B, DEC SP

2280 DATA 3C, INC A

2290 DATA 3D, DEC A

2300 DATA 3F, CCF

2310 DATA 40, "LD B,B"

2320 DATA 41, "LD B,C"

2330 DATA 42, "LD B,D"

2340 DATA 43, "LD B,E"

2350 DATA 44, "LD B,H"

2360 DATA 45, "LD B,L"

2370 DATA 46, "LD B, (HL) "

2380 DATA 47 "LD B,A"

2390 DATA 48 "LD C,B"

2400 DATA 49, "LD C,C"

2410 DATA 4A, "LD C,D"

2420 DATA 4B, "LD C,E"

2430 DATA 4C, "LD C,H"

2440 DATA 4D, "LD C,L"

2450 DATA 4E, "LD C, (HL) "

2460 DATA 4F, "LD C,A"

2470 DATA 50, "LD D,B"

2480 DATA 51, "LD D,C"

2490 DATA 52, "LD D,D"

2500 DATA 53, "LD D,E"

2510 DATA 54, "LD D,H"

2520 DATA 55, "LD D,L"

2530 DATA 56, "LD D, (HL) "

2540 DATA 57, "LD D,A"

2550 DATA 58, "LD E,B"

2560 DATA 59, "LD E,C"

2570 DATA 5A, "LD E,D"

2580 DATA 5B, "LD E,E"

2590 DATA 5C, "LD E,H"

2600 DATA 5D, "LD E,L"

2610 DATA 5E, "LD E, (HL)"

2620 DATA 5F, "LD E,A"

2630 DATA 60, "LD H,B"

2640 DATA 61, "LD H,C"

2650 DATA 62, "LD H,D"

2660 DATA 63, "LD H,E"

2670 DATA 64, "LD H,H"

2680 DATA 65, "LD H,L"

2690 DATA 66, "LD H, (HL) "

2700 DATA 67, "LD H,A"

2710 DATA 68, "LD L,B"

2720 DATA 69, "LD L,C"

2730 DATA 6A, "LD L,D"

OVLZ YIYd 36 an.. ..a,7

0£LZ YIYd D6 ai.. ..H"I

09LZ YIYd 06 ai.. ..Tl

OLLZ YIYd 39 an.. ..(1H)"I

08Z.Z YIYd 36 ai.. ..Y"I

06Z.Z YIYd OL ai.. ..a,(iH)

008Z YIYd XL ai.. ..D,(1H)

0I8Z YIYd ZL ai.. ..a,(TH)

0Z8Z YIYd £L ai.. ..a,(1H)

0E8Z YIYd \L an.. ..H,(TH)

048Z YIYd SL ai., ..T(TH)

508Z YIYd 9L ITYH

068Z YIYd LL ai.. ,.Y,(1H)

0Z.8Z YIYd BL an.. ..a,Y

088Z YIYd 6L ai.. ..D,Y

098Z YIYd YZ. ai.. ..a,Y

009Z YIYd HZ. crc.. ..3,Y

0I9Z YIYd DL an.. ..H,Y

0Z9Z YIYd OL (Pi» ..TY

0E9Z YIYd 'EL an.. ..(1H),Y

0*9Z YIYd 3Z. di» ..Y,Y

509Z YIYd 08 aaY.. ..a,Y

069Z YIYd 18 aaY.. ..D,Y

0Z.9Z YIYd ZB aaY.. ..a,Y

089Z YIYd E8 aaY.. ..3,Y

099Z YIYd 48 aaY.. ..H,Y

OO30 YIYd S8 aaY.. ..TY

OTOE YIYd 98 aaY.. ..(TO),Y

OZOE YIYd LB aaY.. ..Y,Y

OEOE YIYd 88 DOY.. ..a,Y

O4OE YIYd 68 DOY.. ..D,Y

OSOE YIYd Y8 DQY.. ..a,v

060E YIYd ,38 DOY.. ..a,Y

OZ.OE YIYd ,D8 DQY.. ..H,Y

080E YIYd ,08 DQY.. ..TV

090E YIYd ,38 DOY.. ..(1H),V

OOIE YIYd ,F8 DQY.. ..Y,Y

OIIE YIYd ,06 ans a

OZIE YIYd ,19 ans 0

OEIE YIYd ,36 ans a

OHE YIYd ,E6 ans a

OSTE YIYd ,94 ans H

06IE YIYd ,S6 ans

OZ.TE YIYd ,66 ans (TH)

08TE YIYd ,L6 ens

09TE YIYd ,86 Das.. ..a,Y

OOZE YIYd 66 Das.. ..D,Y

OIZE YIYd Y9
Das.■

,.d,Y

OZZE YIYd ,36 Das.. ..a,Y

OEZE YIYd ,D6 Das., ..H,Y

O4ZE YIYd ,06 Das.. ..TV

OSZE YIYd ,36 Das.. (TH),Y

06ZE YIYd ,F9 Das., ,,Y,Y

OZ.ZE YIYd ,OY auv a

08ZE YIYd ,TV ONY D

06ZE YIYd ,ZY ony a

OOEE YIYd ,EY ony a

OIEE YIYO ,4Y ony H

OZEE YIYd ,SY dNY 1

OEEE YIYd ,6Y dNY (TH)

Oil

Advanced User Guide 111

3340 DATA A7 ,AND A

3350 DATA A8 ,XOR B

3360 DATA A9 XOR C

3370 DATA AA XOR D

3380 DATA AB XOR E

3390 DATA AC XOR H

3400 DATA AD XOR L

3410 DATA AE XOR (HL)

3420 DATA AF XOR A

3430 DATA BO OR B

3440 DATA Bl OR C

3450 DATA B2 OR D

3460 DATA B3 OR E

3470 DATA B4 OR H

3480 DATA B5 OR L

3490 DATA B6 OR (HL)

3500 DATA B7 OR A

3510 DATA B8 CP B

3520 DATA B9 CP C

3530 DATA BA CP D

3540 DATA BB CP E

3550 DATA BC CP H

3560 DATA BD CP L

3570 DATA BE CP (HL)

3580 DATA BF CP A

3590 DATA CO RET NZ

3600 DATA CI POP BC

3610 DATA C5 PUSH BC

3620 DATA C7 RST £00

3630 DATA C8 RET Z

3640 DATA C9 RET

3650 DATA CF RST £08

3660 DATA DO RET NC

3670 DATA Dl POP DE

3680 DATA D5 PUSH DE

3690 DATA D7 RST £10

3700 DATA D8 RET C

3710 DATA D9 EXX

3720 DATA DF RST £18

3730 DATA EO RET PO

3740 DATA El POP HL

3750 DATA E3 "EX (SP),HL"

3760 DATA E5, PUSH HL

3770 DATA E7 RST fi20

3780 DATA E8 RET PE

3790 DATA E9, JP (HL)

3800 DATA EB "EX DE,HL"

3810 DATA EF, RST £28

3820 DATA FO, RET P

3830 DATA Fl, POP AF

3840 DATA F3, DI

3850 DATA F5, PUSH AF

3860 DATA F7, RST £30

3870 DATA F8, RET M

3880 DATA F9, "LD SP,HL"

3890 DATA FB, EI

3900 DATA FF, RST £38

3910

3920 REM Two byte

3930 :

112 The Amstrad Notepad

3940 DATA CB,00,

3950 DATA CB,01,

3960 DATA CB,02,

3970 DATA CB,03,

3980 DATA CB,04,

3990 DATA CB,05,

4000 DATA CB,06,

4010 DATA CB,07,

4020 DATA CB,08,

4030 DATA CB, 09,

4040 DATA CB, OA,

4050 DATA CB, OB,

4060 DATA CB, OC

4070 DATA CB, OD,

4080 DATA CB, OE,

4090 DATA CB, OF

4100 DATA CB,10,

4110 DATA CB,11,

4120 DATA CB,12,

4130 DATA CB,13

4140 DATA CB,14

4150 DATA CB,15

4160 DATA CB,16

4170 DATA CB,17

4180 DATA CB,18

4190 DATA CB,19

4200 DATA CB, 1A

4210 DATA CB,1B

4220 DATA CB, 1C

4230 DATA CB,1D

4240 DATA CB,1E

4250 DATA CB, IF

4260 DATA CB, 20

4270 DATA CB, 21

4280 DATA CB,22

4290 DATA CB,23

4300 DATA CB,24.

4310 DATA CB,25

4320 DATA CB, 26

4330 DATA CB,27

4340 DATA CB,28

4350 DATA CB,29

4360 DATA CB, 2A,

4370 DATA CB, 2B

4380 DATA CB, 2C

4390 DATA CB, 2D

4400 DATA CB, 2E

4410 DATA CB,2F

4420 DATA CB, 38

4430 DATA CB,39

4440 DATA CB, 3A

4450 DATA CB, 3B

4460 DATA CB,3C

4470 DATA CB, 3D

4480 DATA CB, 3E

4490 DATA CB,3F

4500 DATA CB, 40

4510 DATA CB, 41

4520 DATA CB, 42

4530 DATA CB, 43

RLC B

RLC C

RLC D

RLC E

RLC H

RLC L

RLC (HL)

RLC A

RRC B

RRC C

RRC D

RRC E

RRC H

RRC L

RRC (HL)

RRC A

RL B

RL C

RL D

RL E

RL H

RL L

RL (HL)

RL A

RR B

RR C

RR D

RR E

RR H

RR L

RR (HL)

RR A

SLA B

SLA C

SLA D

SLA E

SLA H

SLA L

SLA (HL)

SLA A

SRA B

SRA C

SRA D

SRA E

SRA H

SRA L

SRA (HL)

SRA A

SRL B

SRL C

SRL D

SRL E

SRL H

SRL L

SRL (HL)

SRL A

"BIT 0,B"

"BIT 0,C"

"BIT 0,D"

"BIT 0,E"

Advanced User Guide 113

4540 DATA CB 44 "BIT 0 ,H"

4550 DATA CB 45 "BIT 0 ,L"

4560 DATA CB 46 "BIT 0 , (HL) "

4570 DATA CB 47 "BIT 0 ,A"

4580 DATA CB 48 "BIT 1 B"

4590 DATA CB 49, "BIT 1 ,C"

4600 DATA CB 4A, "BIT 1 ,D"

4610 DATA CB 4B, "BIT 1 ,B"

4620 DATA CB 4C, "BIT 1 H"

4630 DATA CB 4D, "BIT 1 L"

4640 DATA CB, 4E, "BIT 1 (HL) "

4650 DATA CB, 4F, "BIT 1 A"

4660 DATA CB, 50, "BIT 2 B"

4670 DATA CB, 51, "BIT 2 C"

4680 DATA CB, 52, "BIT 2 D"

4690 DATA CB, 53, "BIT 2 E"

4700 DATA CB, 54, "BIT 2 H"

4710 DATA CB, 55, "BIT 2 L"

4720 DATA CB, 56, "BIT 2 (HL) "

4730 DATA CB, 57, "BIT 2 A"

4740 DATA CB, 58, "BIT 3 B"

4750 DATA CB, 59, "BIT 3 C"

4760 DATA CB, 5A, "BIT 3 D"

4770 DATA CB, 5B, "BIT 3 E"

4780 DATA CB, 5C, "BIT 3 H"

4790 DATA CB, 5D, "BIT 3 L"

4800 DATA CB, 5E, "BIT 3 (HL) "

4810 DATA CB, 5F, "BIT 3 A"

4820 DATA CB, 60, "BIT 4 B"

4830 DATA CB, 61, "BIT 4 C"

4840 DATA CB, 62, "BIT 4 D"

4850 DATA CB, 63, "BIT 4 B"

4860 DATA CB, 64, "BIT 4 H"

4870 DATA CB, 65, "BIT 4 L"

4880 DATA CB, 66, "BIT 4 (HL) "

4890 DATA CB, 67, "BIT 4 A"

4900 DATA CB, 68, "BIT 5 B"

4910 DATA CB, 69, "BIT 5 C"

4920 DATA CB, 6A, "BIT 5 D"

4930 DATA CB, 6B, "BIT 5 E"

4940 DATA CB, 6C, "BIT 5 H"

4950 DATA CB, 6D, "BIT 5 L"

4960 DATA CB, 6E, "BIT 5 (HL) "

4970 DATA CB, 6F, "BIT 5 A"

4980 DATA CB, 70, "BIT 6 B"

4990 DATA CB, 71, "BIT 6 C"

5000 DATA CB, 72, "BIT 6 D"

5010 DATA CB, 73, "BIT 6, E"

5020 DATA CB, 74, "BIT 6, H"

5030 DATA CB, 75, "BIT 6, L"

5040 DATA CB, 76, "BIT 6, (HL) "

5050 DATA CB, 77, "BIT 6, A"

5060 DATA CB, 78, "BIT 7, B"

5070 DATA CB, 79, "BIT 7, C"

5080 DATA CB, 7A, "BIT 7, D"

5090 DATA CB, 7B, "BIT 7, E"

5100 DATA CB, 7C, "BIT 7, H"

5110 DATA CB, 7D, "BIT 7, L"

5120 DATA CB, 7E, "BIT 7, (HL) "

5130 DATA CB, 7F, "BIT 7, A"

114 The Amstrad Notepad

5140 DATA CB, 80, "RES 0, B"

5150 DATA CB, 81, "RES 0, C"

5160 DATA CB, 82, "RES 0 D"

5170 DATA CB, 83, "RES o, E"

5180 DATA CB, 84, "RES 0 H"

5190 DATA CB, 85, "RES 0 L"

5200 DATA CB, 86, "RES 0 (HL) "

5210 DATA CB, 87, "RES 0 A"

5220 DATA CB, 88, "RES 1 B"

5230 DATA CB, 89, "RES 1 C"

5240 DATA CB, 8A, "RES 1 D"

5250 DATA CB, 8B, "RES 1 E"

5260 DATA CB, 8C, "RES 1 H"

5270 DATA CB, 8D, "RES 1 L"

5280 DATA CB, 8E, "RES 1 (HL) "

5290 DATA CB, 8F, "RES 1 A"

5300 DATA CB, 90, "RES 2 B"

5310 DATA CB 91, "RES 2 C"

5320 DATA CB 92, "RES 2 D"

5330 DATA CB 93, "RES 2 E"

5340 DATA CB 94, "RES 2 H"

5350 DATA CB 95, "RES 2 L"

5360 DATA CB 96, "RES 2 (HL)"

5370 DATA CB 97, "RES 2 A"

5380 DATA CB 98, "RES 3 B"

5390 DATA CB 99, "RES 3 C"

5400 DATA CB 9A, "RES 3 D"

5410 DATA CB 9B, "RES 3 ,1"

5420 DATA CB 9C, "RES 3 H"

5430 DATA CB 9D, "RES 3 L"

5440 DATA CB 9E, "RES 3 (HL) "

5450 DATA CB 9F, "RES 3 A"

5460 DATA CB AO, "RES 4 B"

5470 DATA CB Al, "RES 4 ,C"

5480 DATA CB A2, "RES 4 D"

5490 DATA CB A3, "RES 4 E"

5500 DATA CB A4, "RES 4 H"

5510 DATA CB A5, "RES 4 ,L"

5520 DATA CB A6, "RES 4 (HL) "

5530 DATA CB A7, "RES 4 A"

5540 DATA CB A8, "RES 5 B"

5550 DATA CB A9, "RES 5 C"

5560 DATA CB AA, "RES 5 D"

5570 DATA CB AB, "RES 5 E"

5580 DATA CB AC, "RES 5 H"

5590 DATA CB AD, "RES 5 L"

5600 DATA CB AE, "RES 5 (HL) "

5610 DATA CB AF, "RES 5 A"

5620 DATA CB BO, "RES 6 B"

5630 DATA CB Bl, "RES 6 C"

5640 DATA CB B2, "RES 6 D"

5650 DATA CB B3, "RES 6 E"

5660 DATA CB, B4, "RES 6 H"

5670 DATA CB, B5, "RES 6 L"

5680 DATA CB, B6, "RES 6 (HL) "

5690 DATA CB, B7, "RES 6 A"

5700 DATA CB, B8, "RES 7, B"

5710 DATA CB, B9, "RES 7, C"

5720 DATA CB, BA, "RES 7 D"

5730 DATA CB, BB, "RES 7, E"

Advanced User Guide 115

5740 DATA CB ,BC "RES 7 ,H"

5750 DATA CB ,BD "RES 7 rL"

5760 DATA CB BE "RES 7 . (HL) "

5770 DATA CB ,BF "RES 7 A"

5780 DATA CB ,C0 "SET 0 ,B"

5790 DATA CB ,C1, "SET 0 ,C"

5800 DATA CB ,C2 "SET 0 fD"

5810 DATA CB ,C3, "SET 0 ,E"

5820 DATA CB C4, "SET 0 ,H"

5830 DATA CB C5, "SET 0 rL"

5840 DATA CB C6 "SET 0 (HL) "

5850 DATA CB C7, "SET 0 A"

5860 DATA CB C8, "SET 1 ,B"

5870 DATA CB C9, "SET 1 ,C"

5880 DATA CB CA, "SET 1 ,D"

5890 DATA CB CB, "SET 1 ,E"

5900 DATA CB CC, "SET 1

5910 DATA CB CD, "SET 1 L"

5920 DATA CB CE, "SET 1 (HL) "

5930 DATA CB CF, "SET 1 A"

5940 DATA CB DO, "SET 2 B"

5950 DATA CB Dl, "SET 2 C"

5960 DATA CB D2, "SET 2 D"

5970 DATA CB D3, "SET 2
En

5980 DATA CB D4, "SET 2 H"

5990 DATA CB D5, "SET 2 L"

6000 DATA CB D6, "SET 2 (HL) "

6010 DATA CB D7, "SET 2 A"

6020 DATA CB D8, "SET 3 B"

6030 DATA CB D9, "SET 3 C"

6040 DATA CB DA, "SET 3 D"

6050 DATA CB DB, "SET 3 E"

6060 DATA CB DC, "SET 3, H"

6070 DATA CB DD, "SET 3 L"

6080 DATA CB DE, "SET 3, (HL) "

6090 DATA CB, DF, "SET 3, A"

6100 DATA CB, EO, "SET 4, B»

6110 DATA CB, El, "SET 4, C"

6120 DATA CB, E2, "SET 4, D"

6130 DATA CB, E3, "SET 4, E"

6140 DATA CB, E4, "SET 4, H"

6150 DATA CB, E5, "SET 4, L"

6160 DATA CB, E6, "SET 4. (HL) "

6170 DATA CB, E7, "SET 4, A"

6180 DATA CB, E8, "SET 5, B"

6190 DATA CB, E9, "SET 5, C"

6200 DATA CB, EA, "SET 5, D"

6210 DATA CB, EB, "SET 5, E"

6220 DATA CB, EC, "SET 5, H"

6230 DATA CB, ED, "SET 5, L"

6240 DATA CB, EE, "SET 5, (HL) "

6250 DATA CB, EF, "SET 5, A"

6260 DATA CB, FO, "SET 6, B"

6270 DATA CB, Fl, "SET 6, C"

6280 DATA CB, F2, "SET 6, D"

6290 DATA CB, F3, "SET 6, E"

6300 DATA CB, F4, "SET 6, H"

6310 DATA CB, F5, "SET 6, L"

6320 DATA CB, F6, "SET 6, (HL) -

6330 DATA CB, F7, "SET 6, A"

116 The Amstrad Notepad

6340 DATA CB, F8, "SET 7,B"

6350 DATA CB, F9, "SET 7,C"

6360 DATA CB, FA, "SET 7,D"

6370 DATA CB, FB, "SET 7,E"

6380 DATA CB, FC, "SET 7,H"

6390 DATA CB FD, "SET 7,L"

6400 DATA CB FE, "SET 7, (HL) "

6410 DATA CB. FF, "SET 7, A"

6420 DATA DD 09, "ADD IX, BC"

6430 DATA DD 19, "ADD IX, DE"

6440 DATA DD 23, INC IX

6450 DATA DD, 29, "ADD IX, IX"

6460 DATA DD 2B, DEC IX

6470 DATA DD 39, "ADD IX, SP"

6480 DATA DD, El, POP IX

6490 DATA DD E3, "EX (SP),IX"

6500 DATA DD E5, PUSH IX

6510 DATA DD E9, JP (IX)

6520 DATA DD F9, "LD SP,IX"

6530 DATA ED 40, "IN B, (C) "

6540 DATA ED 41, "OUT (C),B"

6550 DATA ED 42, "SBC HL,BC"

6560 DATA ED 44, MSG

6570 DATA ED 45, RETN

6580 DATA ED 46, IM 0

6590 DATA ED 47, "LD I, A"

6600 DATA ED 48, "IN C, (C) "

6610 DATA ED 49, "OUT (C),C"

6620 DATA ED 4A, "ADC HL,BC"

6630 DATA ED 4D, RETI

6640 DATA ED 4F, "LD R,A"

6650 DATA ED 50, "IN D, (C) "

6660 DATA ED 51 "OUT (C),D"

6670 DATA ED 52 "SBC HL,DE"

6680 DATA ED 56 IM 1

6690 DATA ED 57 "LD A, I"

6700 DATA ED 58 "IN E, (C) "

6710 DATA ED 59 "OUT (C),E"

6720 DATA ED 5A "ADC HL,DE"

6730 DATA ED 5E IM 2

6740 DATA ED 5F "LD A,R"

6750 DATA ED 60 "IN H, (C) "

6760 DATA ED 61 "OUT (C),H"

6770 DATA ED 62 "SBC HL,HL"

6780 DATA ED 67 RRD

6790 DATA ED 68 "IN L, (C) "

6800 DATA ED 69 "OUT (C),L"

6810 DATA ED 6A "ADC HL,HL"

6820 DATA ED 6F RLD

6830 DATA ED 72 "SBC HL,SP"

6840 DATA ED 78 "IN A, (C) "

6850 DATA ED 79 "OUT (C),A"

6860 DATA ED 7A "ADC HL,SP"

6870 DATA ED 8B OTDR

6880 DATA ED AO LDI

6890 DATA ED Al CPI

6900 DATA ED A2 INI

6910 DATA ED A3 OUTI

6920 DATA ED A8 LDD

6930 DATA ED A9 CPD

Advanced User Guide 117

6940 DATA ED,AA,IND

6950 DATJ> ED,AB,OUTD

6960 DATA ED,B0,LDIR

6970 DATA ED,B1,CPIR

6980 DATA ED,B2,INIR

6990 DATA ED,B3,OTIR

7000 DATA ED,B8,LDDR

7010 DATA ED,B9,CPDR

7020 DATA ED,BA,INDR

7030 DATA FD,09,"ADD IY,BC"

7040 DATA FD,19,"ADD IY,DE"

7050 DATA FD,23,INC IY

7060 DATA FD,29,"ADD IY, IY"

7070 DATA FD,2B,DEC IY

7080 DATA FD,39,"ADD IY,SP"

7090 DATA FD,E1,P0P IY

7100 DATA FD,E3,"EX (SP),IY"

7110 DATA FD,E5,PUSH IY

7120 DATA FD,E9,JP (IY)

7130 DATA FD,F9,"LD SP,IY"

7140 :

7150 REM Two byte: n

7160 :

7170 DATA 06, "LD B,*"

7180 DATA 0E, "LD C,*"

7190 DATA 16, "LD D,*"

7200 DATA IE, "LD E,*"

7210 DATA 26, "LD H,*"

7220 DATA 2E, "LD L,*"

7230 DATA 36, "LD (HL),*"

7240 DATA 3E, "LD A,*"

7250 DATA C6, "ADD A,*"

7260 DATA CE, "ADC A,*"

7270 DATA D3, "OUT (*) ,A"

7280 DATA D6,SUB *

7290 DATA DB, "IN A,*"

7300 DATA DE, "SBC A,*"

7310 DATA E6,AND *

7320 DATA EE,XOR *

7330 DATA F6,OR *

7340 DATA FE,CP *

7350 :

7360 REM Two byte: e

7370 :

7380 DATA 10,DJNZ *

7390 DATA 18, JR *

7400 DATA 20, "JR NZ,*"

7410 DATA 28, "JR Z, *"

7420 DATA 30, "JR NC,*"

7430 DATA 38, "JR C, *"

7440 :

7450 REM Three byte: nn

7460 :

7470 DATA 01, "LD BC,*"

7480 DATA 11, "LD DE,*"

7490 DATA 21, "LD HL,*"

7500 DATA 22, "LD (*),HL"

7510 DATA 2A, "LD HL, (*) "

7520 DATA 31, "LD SP,*"

7530 DATA 32, "LD (*) ,A"

118 The Amstrad Notepad

7540 DATA 3A, "LD A, (*)
ii

7550 DATA C2, "JP NZ,*"

7560 DATA C3, JP *

7570 DATA C4, "CALL NZ, * n

7580 DATA CA, "JP Z,*"

7590 DATA CC, "CALL Z,*"

7600 DATA CD, CALL *

7610 DATA D2, "JP NC,*"

7620 DATA D4, "CALL NC, * "

7630 DATA DA, "JP C,*"

7640 DATA DC, "CALL C,*

7650 DATA E2, "JP PO,*"

7660 DATA E4, "CALL PO,

7670 DATA EA, "JP PE,*"

7680 DATA EC, "CALL PE, * "

7690 DATA F2, "JP P,*"

7700 DATA F4, "CALL P,*

7710 DATA FA, "JP M, *"

7720 DATA FC, "CALL M,*

7730 :

7740 REM Three byte . IX/IY n

7750

7760 DATA DD, 34 INC (IX+*)

7770 DATA DD, 35 DEC (IX+*)

7780 DATA DD, 46 "LD B, (IX+*) "

7790 DATA DD, 4E "LD C, (IX+*) "

7800 DATA DD, 56 "LD D, (IX+*) "

7810 DATA DD, 5E "LD E, (IX+*) "

7820 DATA DD, 66, "LD H, (IX+*) "

7830 DATA DD, 6E, "LD L, (IX+*) "

7840 DATA DD, 70, "LD (IX+*) ,B"

7850 DATA DD, 71 "LD (IX+*) ,C"

7860 DATA DD, 72 "LD (IX+*) ,D"

7870 DATA DD, 73 "LD (IX+*) ,E"

7880 DATA DD, 74, "LD (IX+*) ,H"

7890 DATA DD, 75 "LD (IX+*) ,L"

7900 DATA DD, 77 "LD (IX+*) ,A"

7910 DATA DD, 7E "LD A, (IX+*) "

7920 DATA DD, 86 "ADD A, (IX+*) "

7930 DATA DD, 8E "ADC A, (IX+*) "

7940 DATA DD, 96 SUB (IX+*)

7950 DATA DD, 9E "SBC A, (IX+*) "

7960 DATA DD, A 6 AND (IX+*)

7970 DATA DD, AE XOR (IX+*)

7980 DATA DD,B6 OR (IX+*)

7990 DATA DD, BE CP (ix+*)

8000 DATA FD, 34 INC (IY+*)

8010 DATA FD,35 DEC (IY+*)

8020 DATA FD, 46 "LD B, (IY+*) "

8030 DATA FD, 4E "LD C, (IY+*) "

8040 DATA FD, 56 "LD D, (IY+*) "

8050 DATA FD, 5E "LD E, (IY+*) "

8060 DATA FD, 66 "LD H, (IY+*) "

8070 DATA FD, 6E "LD L, (IY+*) "

8080 DATA FD, 70 "LD (IY+*) ,B"

8090 DATA FD, 71, "LD (IY+*) ,C"

8100 DATA FD, 72 "LD (IY+*) ,D"

8110 DATA FD,73 "LD (IY+*) ,E"

8120 DATA FD,74, "LD (IY+*) ,H"

8130 DATA FD, 75, "LD (IY+*) ,L"

Advanced User Guide 119

8140 DATA FD,77,"LD (IY+*) ,A"

8150 DATA FD, 7E, "LD A, (IY+*) "

8160 DATA FD,86, "ADD A, (IY+*) "

8170 DATA FD, 8E, "ADC A, (IY+*) "

8180 DATA FD,96,SUB (IY+*)

8190 DATA FD, 9E, "SBC A, (IY+*) "

8200 DATA FD,A6,AND (IY+*)

8210 DATA FD,AE,XOR (IY+*)

8220 DATA FD,B6,OR (IY+*)

8230 DATA FD,BE,CP (IY+*)

8240 :

8250 REM Four byte: n

8260 :

8270 DATA DD,36, "LD (IX+*) ,*"

8280 DATA FD,36, "LD (IY+*) ,*"

8290

8300 REM Four byte: nn

8310

8320 DATA DD, 21, "LD IX,*"

8330 DATA DD, 22, "LD (*) ,ix
"

8340 DATA DD,2A, "LD IX, (*)
n

8350 DATA ED, 43, "LD (*),BC
"

8360 DATA ED, 4B, "LD BC, (*)

8370 DATA ED, 53, "LD (*),DE n

8380 DATA ED, 5B, "LD DE, (*)
"

8390 DATA ED, 73, "LD (*),SP
ii

8400 DATA ED, 7B, "LD SP, (*)
n

8410 DATA FD,21, "LD IY,*"

8420 DATA FD,22, "LD (*),IY
n

8430 DATA FD,2A, "LD IY, (*) "

8440 :

8450 REM Four byte: IX/IY n

8460 :

8470 DATA DD,CB, 06, RLC (IX+*)

8480 DATA DD, CB, 0E,RRC (IX+*)

8490 DATA DD,CB,16, RL (IX+*)

8500 DATA DD,CB,1E,RR (IX+*)

8510 DATA DD,CB,26, SLA (IX+*)

8520 DATA DD,CB,2E,SRA (IX+*)

8530 DATA DD, CB, 3E, SRL (IX+*)

8540 DATA DD,CB, 46, "BIT o, (IX+*)

8550 DATA DD,CB, 4E, "BIT 1, (IX+*)

8560 DATA DD,CB,56, "BIT 2, (IX+*)

8570 DATA DD,CB,5E, "BIT 3, (ix+*)

8580 DATA DD, CB, 66, "BIT 4, (IX+*)

8590 DATA DD, CB, 6E, "BIT s, (IX+*)

8600 DATA DD,CB, 76, "BIT 6, (IX+*)

8610 DATA DD,CB, 7E, "BIT 7, (IX+*) 11

8620 DATA DD, CB, 86, "RES o, (ix+*)
II

8630 DATA DD, CB, 8E, "RES 1, (IX+*)
II

8640 DATA DD, CB, 96, "RES 2, (IX+*) n

8650 DATA DD, CB, 9E, "RES 3, (IX+*) "

8660 DATA DD, CB, A6, "RES 4, (IX+*)
II

8670 DATA DD, CB, AE, "RES 5, (IX+*)
II

8680 DATA DD, CB, B6, "RES 6, (IX+*) II

8690 DATA DD, CB, BE, "RES 7, (IX+*) n

8700 DATA DD, CB, C6, "SET 0, (IX+*)
II

8710 DATA DD, CB, CE, "SET 1, (IX+*) "

8720 DATA DD, CB, D6, "SET 2, (ix+*) n

8730 DATA DD,CB,DE, "SET 3, (ix+*)
II

120 The Amstrad Notepad

8740 DATA DD,CB,E6, "SET 4, (IX+*)"

8750 DATA DD, CB,EE, "SET 5, (IX+*) "

8760 DATA DD,CB,F6, "SET 6, (IX+*) "

8770 DATA DD,CB,FE, "SET 7, (IX+*) "

8780 DATA FD,CB, 06, RLC (IY+*)

8790 DATA FD,CB, 0E,RRC (IY+*)

8800 DATA FD,CB,16, RL (IY+*)

8810 DATA FD,CB,1E,RR (IY+*)

8820 DATA FD,CB,26, SLA (IY+*)

8830 DATA FD,CB,2E,SRA (IY+*)

8840 DATA FD,CB,3E,SRL (IY+*)

8850 DATA FD, CB, 46, "BIT o, (IY+*) "

8860 DATA FD, CB, 4E, "BIT 1, (IY+*) "

8870 DATA FD, CB, 56, "BIT 2, (IY+*) "

8880 DATA FD,CB,5E, "BIT 3, (IY+*) "

8890 DATA FD,CB, 66, "BIT 4, (IY+*) "

8900 DATA FD, CB, 6E, "BIT 5, (IY+*) "

8910 DATA FD,CB, 76, "BIT 6, (IY+*) "

8920 DATA FD,CB, 7E, "BIT 7, (IY+*) "

8930 DATA FD, CB, 86, "RES 0, (IY+*) "

8940 DATA FD,CB, 8E, "RES 1, (IY+*) "

8950 DATA FD,CB, 96, "RES 2, (IY+*) "

8960 DATA FD, CB, 9E, "RES 3, (IY+*) "

8970 DATA FD,CB,A6, "RES 4, (IY+*) "

8980 DATA FD,CB,AE, "RES 5, (IY+*) "

8990 DATA FD, CB,B6, "RES 6, (IY+*) "

9000 DATA FD, CB, BE, "RES 7, (IY+*) "

9010 DATA FD, CB, C6, "SET o, (IY+*) "

9020 DATA FD,CB,CE, "SET 1, (IY+*) "

9030 DATA FD, CB, D6, "SET 2, (IY+*) "

9040 DATA FD,CB,DE, "SET 3, (IY+*) "

9050 DATA FD,CB,E6, "SET 4, (IY+*) "

9060 DATA FD, CB, EE, "SET 5, (IY+*) "

9070 DATA FD,CB,F6, "SET 6, (IY+*) "

9080 DATA FD,CB,FE, "SET 7, (IY+*) "

SECTION 2

REFERENCE

n

CONTINUED . . . FROM THE

NOTEPAD MANUAL

There are a few features of BBC Basic which are essential for advanced programming

on the Notepad, but which were not covered in the computer's manual. Therefore,

they are fully documented here and you should read the following descriptions if you

either want to use BBC Basic's in-built assembler, wish to have control over how

Basic prints values to the screen, pass register values to machine code or integrate

Basic files with Protext wordprocessor files.

*SPOOL & *EXEC

There are several very good reasons for wanting to use these two commands, the first

being that you can actually type in your BBC Basic programs using the Notepad's

built-in wordprocessor. So, for example, to enter a program called PROGRAM.BAS,

press [Function] [Word], followed by [Word] then enter the file name:

PROGRAM.TXT, and start typing in the program.

When you have entered and checked the program press [Stop] to finish and then press

[Function] [B] to enter BBC Basic. If you have a Basic menu program installed - and

you will know if you have - simply press [Stop] to exit it at this point and then type

NEW. Otherwise you will see Basic's opening screen.

Now all you need to do is type:

*EXEC PROGRAM . TXT

and you will see each program line displayed on the screen in turn as if you had

typed them all in very quickly yourself. When finished you can now save the program

as a BBC Basic file by entering:

SAVE "PROGRAM.BAS"

The extension .BAS is recommended to:

Advanced User Guide 123

□ Distinguish it from a wordprocessor or other file

□ Show visually that it is a Basic file.

What has happened is that you have typed all the program into the wordprocessor as

an ASCII file (well, virtually). That is, a file containing all the keystrokes, just as you

typed them. In the second part of the process you told the *EXEC (execute)

command to execute all these keystrokes in order until the file is exhausted.

Now you are in a position to try out your program, so run it and see if it is working

in the way it's supposed to. If not, you may want to make a couple of modifications

here and now in BBC Basic and try again. If you're still not happy, it may need a

more major change, so here's how to re-save the program as an ASCII file suitable

for editing with a wordprocessor. Just type:

*SPOOL PROGRAM.TXT

LIST

Again you will see every line of the program scroll past as the ASCII file is created.

Once done you need to type:

*SPOOL

on its own to turn the spooling off. You can now re-enter the wordprocessor by

pressing [Function] [Word], followed by [Calc] and then selecting the file

PROGRAM.TXT for editing.

This technique may also be useful if you are using one of the larger programs from

this book and don't have a RAM card. In this case Basic will try to store the entire

program in what is called the Notepad's upper memory. This is a small area of RAM

and you can't fit much in it.

However, the lower memory is about three times bigger but only wordprocessor

documents are stored here. So a clever trick you can use is to keep your BBC Basic

programs in ASCII form so that they stay in lower memory and then *EXEC them

into BBC Basic as and when you need to use them.

Having said that, if you intend to use the Notepad to any extent, it is highly

recommended that you buy a RAM card as one will make ALL the difference and

improve your productivity no end. For details of one source of supply please refer to

Appendix 6.

OPT n

This statement determines what output is produced on the screen when assembly

language routines are processed by the interpreter. The OPT statement is followed by

a number between 0 and 7, with the following results:

124 The Amstrad Notepad

OPTO Assembler errors suppressed, no listing

Assembler errors suppressed, listing displayed

Assembler errors reported, no listing

Assembler errors reported, listing displayed

Assembler errors suppressed, no listing, assemble to 0%

Assembler errors suppressed, listing displayed, assemble to 0%

Assembler errors reported, no listing, assemble to 0%

Assembler errors reported, listing displayed, assemble to 0%

OPT 1

OPT 2

OPT 3

OPT 4

OPT 5

OPT 6

OPT 7

Usually you will only be concerned with OPTions 0 to 3 (4 to 7 are discussed later).

So, taking the numbers 0 to 3, if they are shown in binary as follows, you will see

that the right-hand bit defines whether a listing is to be displayed. If the bit is set then

yes, otherwise no. The left-hand bit covers whether errors are reported or not. If the

bit is set then yes, otherwise no:

The OPT statement can only occur inside the square brackets which signify the use of

assembler directives. If labels are used in your assembly listings you will need to

assemble them twice. This is known as a two-pass assembly, where the first pass

assembles the instructions and the second pass, once the locations of all labels have

been determined, adds all the label information (such as JP or JR addresses) to the

correct instructions.

Therefore, an assembly procedure might look like the following, where the variable

PASS is used in a FOR. . . NEXT loop to set the OPTion:

1000 DEF PROC assemble

1010 DIM A% 100

1020 FOR PASS=0 TO 3 STEP 3

1030 P%=A%

1040 [

1050 OPT PASS

1060 :

1070 \ Your code goes here. . .

1080 :

1090]

1100 NEXT

1110 ENDPROC

0 = 00

1 = 01

2 = 10

3 = 11

This will cause the assembler to list all the instructions as it assembles them. Once

you are sure a program assembles correctly you may wish to replace line 1020 with

Advanced User Guide 125

the following, which uses OPTions of 0 and 2, to suppress any assembly displays

other than errors:

1020 FOR PASS=0 TO 2 STEP 2

If you become serious about writing assembler programs there will come a time when

you'll need to assemble code to a memory address which is reserved or even

occupied by the Basic program itself. Obviously this is a big problem, but with a

simple solution. Luckily the Notepad allows you to perform Offset Assembly.

This is where a complete assembly goes ahead, as if it was assembled at the address

pointed to by P% but, in fact, the assembled machine code is stored starting at the

location pointed to by 0%. In other words you can, for example, quite happily

assemble code to run from &C000 onwards (as you might if you were writing a 16K

system application to put in the first 16K of a RAM card), but actually only store the

code in a safe area of ram at &6000-&9FFF.

A procedure to do just that might look like this:

1000 DEF PROC assemble

1010 FOR PASS=4 TO 7 STEP 3

1020 P%=&C000:O%=&6000

1030 [

1040 OPT PASS

1050 :

1060 \ Your code goes here. . .

1070 :

1080]

1090 NEXT

1100 ENDPROC

As well as assigning 0% to point to an area of memory you are CERTAIN is free,

note line 1010 where the variable PASS is assigned different values from before.

To explain: Going back to where OPT values 0 to 3 were examined in binary, if you

look at the binary equivalents of the numbers 4 to 7 you will see that the right-hand

bit pairs are still acting in the same way as before to control the display of listing

and/or error reports, but there is a new third bit on the left. It is this one (if set) that

tells the assembler to assemble at 0% rather than P%:

4 = 100

5 = 101

6 = no

7 = 111

Finally, once your assembly takes place without any errors, for a blank display during

Offset assembly you could change line 1010 to:

1010 FOR PASS=4 TO 6 STEP 2

126 The Amstrad Notepad

DEF

While in the assembler there are three undocumented commands you can use for

allocating space. They are DEFB, DEFW and DEFM which, in turn, allocate a single

byte, a two-byte word and a string of memory. These commands are used in place of

the BBC Micro's EQUB, EQUW and EQUS keywords. Examples of acceptable

command syntax include:

DEFB SFF

DEFB byte

DEFB ASC("A")

DEFW Z%

DEFW 0

DEFW &123 4

DEFM "This is a test"

REGISTER VARIABLES

Just as you could directly pass values to the 6502's registers on the original BBC

Micro by setting A%, F%, X% and Y%, so you can with Z80 BBC Basic.

The variables available are A%, B%, C%, D%, E%, F%, H% and L%, which directly

correspond with the Z80's registers when treated as 8-bit single registers, rather than

register pairs.

So, for example, you could print a single character to the screen (with the call

TXTOUTPUT - &B833), using the following two commands:

A%=ASC("*")

CALL SB833

In addition, BBC Basic returns the contents of these registers to the variables when it

returns from a CALL or USR command.

In fact, USR can be a handy replacement for CALL because it also returns the

contents of the alternate registers H' and L'. It does this by returning a 32-bit value

corresponding to H, L, H' and L\ in that order. This is the way BBC Basic internally

handles all 32-bit values.

@%

The NCI00 manual mentions @% but gives you no details about using it. Using @%

you can manipulate the way numbers are displayed by the PRINT and STR$

commands. With it you can control the field width, the total number of characters

printed and the number of decimal places.

To use it you should consider @% as a four-byte number such as &01020304. The

most significant byte (called B4) has a value of &01 in the above example, while Bl

has a value of &04, and so on.

Advanced User Guide 127

Byte B4

This is tested by the STR$ command to determine the format of strings created by it.

If B4 = &01 then strings will be formatted using the settings in @%, otherwise @%

will be ignored.

This selects the format type where &00 is General format (G), &01 is Exponent

format (E) and &02 is Fixed format (F). In G format, numbers that are integers will

be printed as integers. Numbers in the range 0.1 to 1 will be printed as 0.1 (and so

on), while numbers less than 0. 1 will be printed in exponential format.

Exponential format always prints numbers in scientific notation so, for example, 0.01

is printed as 1E-2, 100 is 1E2 and 1,234,567 is 1.234567E6.

Fixed format always prints numbers with a fixed number of decimal spaces. If a

number cannot be fitted into a field it reverts to the G format. The decimal points are

aligned vertically, making this format particularly useful for printing tables.

This controls the total number of digits printed by each format. By default B2 has a

value of &09. In G format B2 states the maximum number of digits (between 1 and

9) that can be printed before reverting to E format

In E format B2 specifies the total number of digits (between 1 and 9) to be printed

before and after the decimal point (not counting digits after the E).

In F format B2 specifies the number of digits (between 0 and 9) to follow the decimal

point.

This sets the over all print field width and may have any value between &00 and

&FF.

Here are some examples:

Byte B3

Byte B2

Byte Bl

@%= &0000020A

100= 1E2

10= 10

1= 1

0.1= 0.1

0.01= 1E-2

&0000090A &0002020A &0001020A

100

10

1

0.1

1E-2

100.00

10.00

1.00

0.10

0.01

1.0E2

1.0E1

1.0E0

1.0E-1

1.0E-2

You can omit any leading zeros if you prefer.

128 The Amstrad Notepad

EDIT

There appears to be a slight problem with the Notepad's EDIT command when used

incorrectly. For example if you, correctly, type:

EDIT 100

or:

EDIT100

you will get to edit line 100. But if you accidentally type any of:

EDIT #

EDIZf

EDIT [anything but a number]

(because, for example, your finger slipped and hit the # key which is next to

[Return]), then the Notepad will take as many of the first lines of the program as it

can and stick them all in Basic's editing buffer, ready for you to combine them.

Actually you should receive an error message when this happens, but you can easily

get out of this by pressing [Stop].

It appears to be offering you the equivalent of:

EDIT 10,50

which means edit lines 10 to 50 inclusive, placing them all in the edit buffer, but with

a slight change of syntax making the command mean:

EDIT ,

shorthand for edit all the lines you can from the start of the program into the edit

buffer.

Another problem you may encounter with EDIT is if you use Basic keyword

shortcuts (where P. stands for PRINT, R. for RETURN, and so on), and enter the

command E. (short for ENDPROC) at the start of a line while in AUTO mode. In this

case Basic actually interprets this as the EDIT command and throws you out of

AUTO mode and into the EDITor, again with as many lines crammed into the edit

buffer as will fit

The short and simple answer to this is to forget about using E. any more, use EN.

instead and there will be no further confusion between EDIT and ENDPROC.

UNDOCUMENTED FEATURES

TRANSFERRING BBC BASIC PROGRAMS

There is what, at first sight, appears to be a problem with the NCI00 which prevents

you from backing up your BBC Basic programs to another computer, because by

default they are not visible. That is because an unconfigured NCI00 is set up NOT to

display file dates and times, but in order for you to transfer them these MUST be

visible. Apparently the default mode is the simple, beginner's mode, while this is the

advanced mode.

Anyway, what you have to do to configure date displays is press [Function] [X] to

enter the front menu, then press [Menu] followed by the down cursor key twice and

the right cursor key once, to set the display format of dd/mm/yy.

Now you're ready to transfer your files, so press [Function] [L] to list the files, select

the one to send using the cursor keys, press [Menu] and continue with your transfer

as normal.

X - XModem send P - Make Program cord
R - Receive document
M - XModem receive document
P. - Receive Address book

Ready to send a file

QUICK MACRO ASSIGNING

While editing documents you may know that you can assign a sequence of key

strokes on to a single key press (known as a macro), by pressing [Menu], selecting

[M] for Macros, pressing [Symbol] [key] or [Symbol[Shift] [key] (where key is any

key between [A] and [Z]), then typing in the sequence of keys, and finally selecting

[Menu] and [M] again to end the recording of the Macro.

130 The Amstrad Notepad

Thankfully there are two quick and easy short cuts available. The first is to press

[Shift] [Control] [M] to initiate the recording, then press the key combination the

macro is to be assigned to, the key macro sequence itself, and press [Shift] [Con

trol] [M] a second time to end the recording. This feature is also available outside of

the word processor but not in BBC Basic.

E » Edit ing
S » Style ... D - Display macros
T » Text Format t ing . . . C - Copy block or document
H - Create Header P - Print to Screen
F - Create Footer B - Print Blook

Defining a macro

LINE DRAWING CHARACTERS

If you wish to change the character used for line drawing with the [Symbol] and

cursor key (for example, to use an asterisk), press [Shift] [Control [C] and then press a

key such as * then, when you next draw lines, they will be made up of asterisks.

When you have finished, as advised in the manual, to return to standard line drawing

mode press [Shift] [Control] [L] and to switch between single and double line mode

press [Shift] [Control] [D].

Dear Mr. Jones

Thankyou For your etter oF the 24th mm m

Line drawing using asterisks

PAGE DISPLAY MODE

To toggle Page Display mode on and off quickly , press [Shift] [Control] [P]. You will

notice the display alternates between Page n and Ch nnnnn, where n is the page

number and nnnnn is the offset of the current character from the document start. Also,

all the triple-line page break markers between pages will not be displayed.

(Note the di FF.

Dear Mr. Jones ,

Thankyou For your letter oF the 24th

Toggling Page mode on and off

Advanced User Guide 131

USING THE FILE SELECTOR

Wherever you need to load in or browse through files the File Selector function is

called by the Notepad. This includes the *. (catalogue disk) command in BBC Basic

and all listings in this book that use files.

However, the operation of the File Selector is not fully documented in the NCI00

Notepad Manual so, in case you have not yet discovered the undocumented key

presses, here's what else you can do with it:

Firstly, of course, you already know that the cursor keys move the highlight around,

but if you press [Control] while doing so the [Up] and [Down] keys place the

highlight on the first or last item in the current column, while the [Left] and [Right]

keys respectively display the first and last set of (up to) 14 files (if there are more

than 14).

In addition, you can display any hidden files (such as those created by the Diary

program) by pressing [Shift] [Control] [H]. So, for example, if you have a diary entry

set for the 1st of July, 1994, you would see the file name oOl_07_1994. In fact a

separate file is created for each and every day you enter in your diary. To make the

files invisible again press [Shift] [Control] [H] a second time.

You will also be interested to hear that for some unknown reason, the undocumented

macro assignment command [Shift] [Control[M] also works from inside the File

Selector (except when you are in BBC Basic).

Lastly, there's a quick and dirty way of deleting unwanted files. Simply move the

highlight to your chosen file and press either [Del->] or [<-Del] (on the top-right of

your keyboard). You will then be asked whether you want to delete the document.

This is quicker than pressing [Menu] followed by [D], for delete, but do be careful.

The last known undocumented key combination is [Shift] [Control] [Stop]. If you are

editing a document and press it, the screen clears (except for the time) and you get a

command line at the top-left. This appears to be the equivalent of Command Mode,

found on all other implementations of Protext. So far three commands are known.

Four hidden appointment files

PEEKING ABOUT

132 The Amstrad Notepad

key q "This is a MACRO"

The command mode macro define command

There is KEY which is another means of defining macros. To use it type a command

such as:

KEY A Testing

The other two commands are complementary. The first is DU which dumps any part

of the Notepad's RAM or ROM (whatever is mapped in) to the screen. Simply type:

DU &4000

or whatever other address you are interested in, and all the data will be printed to the

screen in hexadecimal and as Ascii characters, just press [Stop] to stop the screen

from scrolling, any other key to resume printing, or [Stop] a second time to return to

the command mode.

4810: 45 CC C3 CB C7 C3 EF C7 C3 DA CC C3 C1 F6 C3 66 EM*IH1fffcr|K4iaMlBB
4020: F3 C3 81 F3 C3 CI F3 C3 33 F3 21 00 02 36 0fl 2C < 'uSf-M Ksi^SBr^^
4030: 36 09 2C OF 77 2C 20 FC 3E 37 32 FE A2 21 76 C0 60,»u, f'>72i6!vL

4040: 22 EE R2 CD CI F0 ED 53 E4 R2 22 DC R2 CD E7 C7 "€6=^-=*SZ6"9&=r\\
4050: C2 D3 CC CD 4E CC 42 42 43 20 42 41 53 49 43 20 -ril^NtfBBC BRSIC

28 4E 43 31 30 30 29 20 56 65 72 73 69 6F 6E 20 (NC100) Version
33 2E 31 30 0D 0fl 28 43 29 20 43 6F 70 79 72 69 3.10JH(C) Copyri

Dumping memory to the screen

Using the MM command you can map in other parts of the system memory to

location &4000, which you can then view using the DU command. So, to page in the

Basic ROM, you would type:

MM &5

The values you can use and the RAM or ROM that gets paged in are:

MM &00 ROM - Operating System

MM &01 ROM - Control code

MM &02 ROM - Calculator

MM &03 ROM - Address book

MM &04 ROM - Diary

MM &05 ROM - BBC Basic

MM &06 ROM - Pretext

MM &07 ROM - Pretext

MM &08 ROM - Spell Check Code

MM &09 ROM - Spell Check Code

MM &0A ROM - Dictionary

Advanced User Guide 133

MM &0B ROM- Dictionary

MM &0C ROM- Dictionary

MM&OD ROM- Dictionary

MM &OE ROM- Dictionary

MM &OF ROM- Dictionary

MM &40 RAM- Internal RAM

MM &41 RAM- Internal RAM

MM &42 RAM- Internal RAM

MM &43 RAM- Internal RAM - Including Video RAM

MM &80- RAM- Card RAM of up to 64 x 1 6K blocks (for 1 Mb card)

See Chapter 3 for specific details on mapping the video RAM into main memory, and

Chapter 4 for a detailed explanation of the NClOO's memory map and how to map

any parts of it into the core 64K area.

UNDOCUMENTED SELF-TEST

There is a POST (Power On Self-Test) built into the NC100 which performs a

number of diagnostic tests. To call it up switch off your Notepad, hold down

[Function] and [Symbol] and then switch it back on again, while still holding down

these two keys.

You will then be able to go through the tests by pressing [Return]. The first test sets

every pixel on the display, so that you can tell whether they are all functioning. Next

all the characters in the character set are displayed. Next you see the value of the

Memory/Battery/Status byte, the Real Time Clock and then the 12 internal ROMs are

checked, followed by all the RAM.

Now you have an opportunity to test the keyboard to make sure all the keys are

returning values. This may be useful if you are getting spurious key strokes. If you

note a problem here it may be a good idea to try to suck out any material under the

keys with a vacuum cleaner.

Next you get to test the parallel port by printing three lines of characters to a printer.

If you have a laser printer you will not notice anything happening (even if this test is

successful), until you send a Form Feed to it to eject the page (or press the Form

Feed button on the printer).

Now it gets noisy because both the A and B sound channels are tested, so if you are

on a train or something you'd be best advised to place your palm over the speaker

grill first.

And finally, you come to the end of the tests where you get an opportunity to run

through them again or return to the Notepad's front menu.

134 The Amstrad Notepad

SAVING THE SCREEN

If you ever wondered how the screen dumps in this book and the NCI00 manual

were created, here's the answer. Each time you press [Shift] [Control] [S] the computer

appears to lock up for a few seconds. In fact it's copying the entire contents of the

screen to a file. The first file is saved with the file name s.a, while subsequent files

are called s.b, s.c and so on, up to s.z and then through the ASCII set from s.{

onwards.

To reset the file name to s.a again for your next screen grab you will need to enter

Basic by pressing [Function] [B] and then type:

96 being the ASCII value one before the character a. The files created are 4,096 bytes

long and consist of 64 rows of 64 bytes. Characters on the NCI00 are six pixels wide

and there are 80 of them on a line, making the screen 480 pixels wide. This equates

to just 60 bytes, so the final four bytes at the end of each line are ignored. In all 256

bytes per screen are wasted but, for convenience and speed, all 4,096 bytes of screen

memory are saved to the file.

Knowing this you can write your own programs to dump these screens to a printer or

even convert them to industry standard PCX or TIFF files. But following are some

example programs you may find useful for manipulating screen dumps both on the

Notepad and on an IBM PC using Borland's Turbo C compiler.

GRAB2PCX.BAS

This BBC Basic program creates an exact PCX image of a screen dump. It uses the

File Selector to choose files and only allows file names that begin S. to check that

they are screen dump files. The PCX file created is totally uncompressed, takes up

about 8K and should be readable by any program that can read the PCX format.

10 REM NC100 Screen grab to PCX converter

20 :

30 CLS:DIM A% 40, B% 128 : PROCassemble

40 FOR J%=1 TO 128

50 READ B%?J%

?£B140=96

PIXEL. BfiS 971 C 11-02-93 14:30 s.o
QUICKMfiC.RflP 4235 C 11-02-93 14:56 s.p
RASTER. BfiS 808 C 11-02-93 14:41 S.q
REfiDYREC . BfiS 2751 C 11-02-93 14:31 s.r
s.l 4096 C 11-02-93 15:00 SCALES. I
s.m 4096 C 11-02-93 15:01 STYLE. B(

4096 C 11-02-93 15:02
4096 C 1 1 -02-93 1 5 : 02
4096 C 11-02-93 15:02
3358 C 1 1-32-93 14:31
7859 C 11-82-93 14:31

The menu system showing several saved screens

Advanced User Guide 135

60 NEXT

70 PRINT "GRAB2PCX.BAS: Press any key for the File Selector...";

:G$=GET$

80 file$=FNselect : IF file$="" THEN CLS : END

90 IF LEFT$ (file$, 2) <> "s." THEN PRINT "Not a screen grab. . . "' :GOTO

70

100 file2$=LEFT$ (file$, 1) +RIGHT$ (file$, 1) +" .pcx"

110 handlein=OPENIN (file$)

120 handleout=OPENOUT(flle2$)

130 FOR J%=1 TO 128

140 BPUT #handleout,B%?J%

150 NEXT

160 PRINT "GRAB2PCX.BAS: Creating file: ";file2$'

170 PRINT "Processing line (of 64):"

180 PRINT:PRINT "When finished this pogram will"

190 PRINT "offer to convert another file."

200 FOR K%=1 TO 64

210 VDU 31, 25, 2: PRINT ;K%

220 FOR J%=1 TO 60

230 BPUT jfhandleout, fiCl

240 BPUT #handleout , BGET #handlein

250 NEXT

260 FOR N%=1 TO 4

270 D%=BGET #handlein

280 NEXT

290 NEXT

300 CLOSE #handlein

310 CLOSE #handleout

320 GOTO 80

330 :

340 REM PCX header block

350 :

360 DATA SA,5,1,1,0,0,0,0,&DF,1,£3F,0,0,0,0,0

370 DATA 0, 0, 0, £FF, &FF, £FF, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

380 DATA 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0

390 DATA 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0

400 DATA 0,1, &3C, 0,1, 0,0, 0,0, 0,0, 0,0, 0,0,0

410 DATA 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0

420 DATA 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0

430 DATA 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0

440 :

450 DEF FNselect

460 CALL A%

470 IF buffer?0 = 0 THEN CLS:=""

480 R$=""

490 FOR J%=0 TO 11

500 IF buffer?J% THEN R$=R$+CHR$ (buffer?J%) ELSE J%=12

510 NEXT

520 =R$

530 :

540 DEF PROCassemble

550 FOR PASS=0 TO 2 STEP 2

560 P%=A%

570 [

580 OPT PASS

590 CALL &B8C3

600 LD DE, buffer

610 JR C, found

620 LD A, 0

630 LD (DE) ,A

640 RET

650 .found

136 The Amstrad Notepad

660 LD B,12

670 .loop

680 LD A, (HL)

690 LD (DE) , A

700 INC HL

710 INC DE

720 DJNZ loop

730 RET

740 .buffer

750]

760 NEXT

770 ENDPROC

G2P-BORD.BAS

This program is identical to the one above except that it draws a border around the

dump before saving it as a slightly larger PCX file with dimensions of 496x80. If you

simply modify the first program rather than type all this one in, remember you will

need to modify the data lines from line 730 to 800 too.

10 REM NC100 Screen grab to PCX converter

20 REM Version 2 - Creates a black border

30 :

40 CLS:DIM A% 40, B% 128 : PROCassemble

SO FOR J%=1 TO 128

60 READ B%?J%

70 NEXT

80 PRINT "GRAB2PCX.BAS: Press any key for the File Selector...";

: G$=GET$

90 file$=FNselect : IF file$=,,,, THEN CLS:END

100 IF LEFT$(file$,2) <> "s." THEN PRINT "Not a screen grab ..."': GOTO

80

110 file2$=LEFT$ (file$, 1) +RIGHT$ (file$, 1) +" .pcx"

120 handlein=OPENIN (file$)

130 handleout=OPENOUT(file2$)

140 FOR J%=1 TO 128

150 BPUT #handleout,B%?J%

160 NEXT

170 PRINT "GRAB2PCX.BAS: Creating file: ";file2$'

180 PRINT "Processing line (of 64):"

190 PRINT :PRINT "When finished this pogram will"

200 PRINT "offer to convert another file."

210 FOR K%=1 TO 2

220 FOR J=l TO 62

230 BPUT #handleout, SCI

240 BPUT #handleout , SFF

250 NEXT

260 NEXT

270 FOR K%=1 TO 6

280 BPUT #handleout , fiCl

290 BPUT #handleout, SCO

300 FOR J%=1 TO 60

310 BPUT #handleout , fiCl

320 BPUT #handleout, S00

330 NEXT

340 BPUT #handleout , SCI

350 BPUT #handleout, S03

Advanced User Guide 137

360 NEXT

370 FOR K%=1 TO 64

380 VDU 31,25,2:PRINT ;K%

390 BPUT #handleout , fiCl

400 BPUT #handleout, fiCO

410 FOR J%=1 TO 60

420 BPUT #handleout, &C1

430 BPUT #handleout , BGET #handlein

440 NEXT

450 BPUT #handleout, &C1

460 BPUT #handleout, &03

470 FOR N%=1 TO 4

480 D%=BGET #handlein

490 NEXT

500 NEXT

510 FOR K%=1 TO 6

520 BPUT #handleout, fiCl

530 BPUT #handleout, &C0

540 FOR J%=1 TO 60

550 BPUT #handleout, £C1

560 BPUT #handleout, &00

570 NEXT

580 BPUT #handleout , fiCl

590 BPUT #handleout, £03

600 NEXT

610 FOR K%=1 TO 2

620 FOR J%=1 TO 62

630 BPUT #handleout, £C1

640 BPUT #handleout , fiFF

650 NEXT

660 NEXT

670 CLOSE #handleln

680 CLOSE #handleout

690 GOTO 90

700 :

710 REM PCX header block

720 :

730 DATA fiA, 5, 1, 1, 0, 0, 0, 0, SEF, 1, fi4F, 0, 0, 0, 0, 0

740 DATA 0, 0, 0, fiFF, fiFF, fiFF, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

750 DATA 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0

760 DATA 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0

770 DATA 0, 1, £3E, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

780 DATA 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0

790 DATA 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0

800 DATA 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0

810 :

820 DEF FNselect

830 CALL A%

840 IF buffer?0 = 0 THEN CLS:=""

850 RS=""

860 FOR J%=0 TO 11

870 IF buffer?J% THEN R$=R$+CHR$ (buffer?J%) ELSE J%=12

880 NEXT

890 =R$

900 :

910 DEF PROCassemble

920 FOR PASS=0 TO 2 STEP 2

930 P%=A%

940 [

950 OPT PASS

960 CALL SB8C3

970 LD DE, buffer

138 The Amstrad Notepad

980 JR C, found

990 LD A, 0

1000 LD (DE) ,A

1010 RET

1020 .found

1030 LD B,12

1040 .loop

1050 LD A, (HL)

1060 LD (DE) ,A

1070 INC HL

1080 INC DE

1090 DJNZ loop

1100 RET

1110 .buffer

1120]

1130 NEXT

1140 ENDPROC

GRABDISP.BAS

To complement the previous program this one will display an S. screen grab so you

can determine whether it has saved correctly and is what you want before converting

to PCX. Use the cursor keys to select a file and press [Return] to view it. Non-screen

dumps will be displayed as garbage.

10 ON ERROR GOTO 90

20 VDU 26:CLS:DIM Z% &80 : PROCassemble

30 PRINT "GRABDISP"'

40 PRINT "Press a key to select a screen grab to display G$=GET$

50 CALL getfile:IF ?filename=0 THEN GOTO 90

60 CALL scrn_from_disk:G$=GET$

70 GOTO 50

80 :

90 ON ERROR GOTO 110

100 VDU 26:CLS:IF ERR=17 THEN CHAIN "AUTO"

110 REPORT: PRINT" at line ";ERL

120 PRINT: PRINT "Press [Function] [X] for Notepad Main Menu"

130 END

140 :

150 DEF PROCassemble

160 fopenin=&B8A2

170 finblock=&B896

180 fclose=&B890

190 :

200 FOR PASS = 0 TO 2 STEP 2

210 P%=Z%

220 [

230 OPT PASS

240 :

250 . scrn_from_disk

260 :

270 LD HL, filename

280 CALL fopenin

290 JR C, froml

300 LD HL, flag

310 LD (HL) , 0

320 RET

Advanced User Guide 139

330 :

340 . froml

350 :

360 LD HL, £8000

370 LD BC, &1000

380 CALL finblock

390 CALL fclose

400 CALL map_scrn_in

410 LD HL,&8000

420 LD DE, &F000

430 LD BC, £1000

440 LDIR

450 CALL map_scrn_out

460 LD HL, flag

470 LD (HL) , 1

480 RET

490 :

500 . map_scrn_in

510 :

520 LD A, (£B003)

530 LD (state) ,A

540 LD A, 67

550 LD (£B003) ,A

560 OUT (£13) ,A

570 RET

580 :

590 . map_scrn_out

600 :

610 LD A, (state)

620 LD (£B003) ,A

630 OUT (£13) , A

640 RET

650 :

660 .flag

670 :

680 DEFB 0

690 :

700 .state

710 :

720 DEFB 0

730 :

740 .get file

750 :

760 CALL £B8C3

770 LD DE, filename

780 JR C, found

790 LD A, 0

800 LD (DE) ,A

810 RET

820 . found

830 LD B,12

840 .loop

850 LD A, (HL)

860 LD (DE) ,A

870 INC HL

880 INC DE

890 DJNZ loop

900 RET

910 :

920 .filename

930 :

940]

140 The Amstrad Notepad

950 NEXT

960 ENDPROC

NC2PCX.C

This IBM-compatible Borland Turbo C program is identical to the BBC Basic

program GRAB2PCX.BAS except that, being compiled and running on a PC, it is

extremely fast.

#include <stdio.h>

#include <stdlib.h>

#include <do s . h>

char data [128]=

{

0x0a,5,l,l, 0, 0, 0, 0, Oxdf ,1, 0x3f , 0, 0, 0, 0, 0,

0, 0, 0, Oxff , Oxff , Oxff , 0, 0,0, 0,0, 0,0,0, 0,0,

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

0,1,0x3c, 0,1, 0,0, 0,0, 0,0, 0,0, 0,0,0,

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0

};

main (argc, argv)

int argc;

char *argv[] ;

{

FILE *fpin, *fpout;

int j,k,byte;

if (argc<3)

{

printf ("Type: NCPCX filename filename");

exit (0) ;

>

fpin=fopen (argv [1] , "rb") ;

if (fpin == NULL)

{

printf ("\nFile %s not found. " , argv [1]) ;

exit (0) ;

)

fpout=fopen (argv[2] , "wb") ;

if (fpout == NULL)

{

printf ("\nCannot create file %s . " , argv [2]) ;

exit (0) ;

}

for (j=0 ; j<128 ; ++j)

{

Advanced User Guide 141

fputc (data [j] , fpout) ;

>

for (k=0 ; k<64 ; ++k)

{

for (j=0 ; j<60 ; ++j)

{

byte=fgetc (fpin) ;

fputc (Oxcl, fpout) ;

fputc (byte, fpout) ;

>

fgetc (fpin) ; fgetc(fpin); fgetc(fpin); fgetc(fpin);

>

fcloseall () ;

NC2PCXB.C

This IBM-compatible Borland Turbo C program is identical to the BBC Basic

program G2P-BORD.BAS except that, being compiled and running on a PC, it is also

extremely fast.

#include <stdio.h>

#include <stdlib.h>

#include <dos.h>

char data [128]=

{

0x0a,5,l,l,0,0,0,0,0xef,l/0x4f,0,0,0,0,0,

0, 0, 0, Oxff , Oxff , Oxff , 0, 0, 0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

0,0, 0,0, 0,0, 0,0, 0,0, 0,0, 0,0, 0,0,

0, 1, 0x3e, 0,1,0,0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,

0,0, 0,0, 0,0, 0,0, 0,0, 0,0,0, 0,0,0,

0,0, 0,0, 0,0, 0,0, 0,0,0, 0,0,0, 0,0

};

main (argc, argv)

int argc;

char *argv[] ;

{

FILE *fpin, *fpout;

int j,k,byte;

if (argc<3)

{

printf ("Type: NCPCX filename filename");

exit (0) ;

>

fpin=fopen (argv [1] , "rb") ;

if (fpin = NULL)

{

printf ("\nFile %s not found. " , argv [1]) ;

exit (0) ;

142 The Amstrad Notepad

}

fpout=fopen (argv [2] , "wb") ;

if (fpout == NULL)

<

printf ("\nCannot create file %s. ", argv[2]) ;

exit (0) ;

)

for (j=0 ; j<128 ; ++j)

{

fputc (data [j] , fpout) ;

)

for (k=0 ; k<2 ; ++k)

{

for (j=0 ; j<62 ; ++j)

{

fputc (Oxcl , fpout) ;

fputc (Oxff , fpout) ;

}

}

for (k=0 ; k<6 ; ++Jc)

{

fputc (Oxcl, fpout) ;

fputc (OxcO, fpout) ;

for (j=0 ; j<60 ; ++j)

{

fputc (Oxcl , fpout) ;

fputc (0x00, fpout) ;

)

fputc (Oxcl , fpout) ;

fputc (0x03, fpout) ;

>

for (Jc=0 ; k<64 ; ++k)

<

fputc (Oxcl , fpout) ;

fputc (OxcO, fpout) ;

for (j=0 ; j<60 ; ++j)

{

byte=fgetc (fpin) ;

fputc (Oxcl, fpout) ;

fputc (byte, fpout) ;

)

fputc (Oxcl, fpout) ;

fputc (0x03, fpout) ;

fgetc (fpin) ; fgetc (fpin) ; fgetc (fpin) ; fgetc (fpin) ;

}

for (k=0 ; k<6 ; ++k)

{

fputc (Oxcl, fpout) ;

Advanced User Guide 143

fputc (OxcO, fpout) ;

for (j=0 ; j<60 ; ++j)

{

fputc (Oxcl , fpout) ;

fputc (0x00, fpout) ;

>

fputc (Oxcl, fpout) ;

fputc (0x03, fpout) ;

}

for (k=0 ; k<2 ; ++k)

{

for (j=0 ; j<62 ; ++j)

{

fputc (Oxcl, fpout) ;

fputc (Oxff , fpout) ;

}

>

fcloseall () ;

}

PCX2NC.C

This final Turbo C program is for restoring non-bordered PCXs back to the original

format, as saved by the Notepad. This is in case you may wish to then transfer one

back to your Notepad or, perhaps, convert it to the bordered PCX format. It's also

useful if you happen to have deleted your original S. files.

#include <stdio.h>

#include <stdllb.h>

#include <dos.h>

char data [128]=

{

0x0a, 5,1,1,0,0,0,0, Oxdf , 1 , 0x3f , 0,0,0,0,0,

0, 0, 0, Oxff, Oxff , Oxff , 0, 0, 0, 0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,

0, 1, 0x3c, 0, 1, 0, 0, 0, 0, 0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,0, 0,0, 0,0, 0,0,

0,0,0,0,0,0,0,0,0, 0,0, 0,0, 0,0,0

};

main (argc, argv)

int argc;

char *argv [] ;

{

FILE * fpin , * fpout ;

int n, byte, len,val, count, offset ;

if (argc<3)

{

144 The Amstrad Notepad

printf ("Type : NCPCX filename filename") ;

exit (0) ;

}

fpin=fopen (argv [1] , "rb") ;

if (fpin == NULL)

{

printf ("\nFile %s not found. " , argv [1]) ;

exit (0) ;

}

fpout=fopen(argv[2] , "wb") ;

if (fpout == NULL)

<

printf ("\nCannot create file %s . " , argv [2]) ;

exit (0) ;

)

fseek (fpin, 128L, 0) ;

offset=0;

for (count=0 ; count<3840 ;)

<

byte=fgetc (fpin) ;

if ((byte & OxcO) == OxcO)

{

len=byte & 0x3 f;

val=fgetc (fpin) ;

for (n=0 ; n<len ; ++n)

{

fputc (val , fpout) ;

++offset;

++count ;

}

}

else

{

fputc (byte, fpout) ;

++offset;

++count ;

>

if (offset == 60)

{

offset=0;

fputc (Oxff , fpout) ; fputc (Oxff, fpout) ;

fputc (Oxff, fpout) ; fputc (Oxff, fpout) ;

}

}

fcloseall () ;

)

WRITING EXTERNAL

PROGRAMS

m man I KMI 1 1

To use the
WORD PROCESSOR

Press
YELLOW & RED

To use the
CALCULATOR

Press
YELLOW S GREEN

To use the
DIARY / CLOCK
ADDRESS BOOK

Press
YELLOW & BLUE

You can create your own similar applications

The simplest and safest way to develop for the Notepad is to get a PCMCIA drive for

your PC and write a binary image direct to the card using that. If this isn't possible

then small programs (up to 16K) can be developed by transferring the binary card

image into the Notepad using Xmodem from the PC. Then use the Make program

card feature in the File transfer menu to write that file on to a newly formatted

PCMCIA RAM card.

You can also use the BBC Basic assembler's Offset assembly facility which will

allow you to write code that is assembled as if it were at &C000 but actually places

the code elsewhere, so that you can save it to a RAM card and run it. Note that you

will probably need two cards for this: the first for your source code and other files,

the second for testing your application. See Chapter 1 for full details on using offset

assembly.

However you create it, to run the resultant code, you just press [Function] [X] and the

first 16K page of the RAM card will be switched to the Z80 memory map at

&C000-&FFFF. A Check is then made that location &C200 holds the ASCII text

NC100PRG and also that locations &C210-&C212 contain a long jump to &C220.

All being well, the Z80 will start executing code at &C210 so that, once you have

control, you can take over completely if you wish (driving all hardware functions

146 The Amstrad Notepad

directly). Most people will probably want to cooperate with the in-built firmware as it

provides most of the routines that you could want anyway.

But you MUST follow a few important rules in order for your application to be

recognised by the system and to interact correctly with it. First of all the program's

origin MUST be &C210, and the first instruction must be a JP &C220.

From &C213 to &C21F you need to store the name of your application, followed by

a zero byte. The total length of the name including the zero terminator may not be

longer than 13 characters. Here's an illustration:

ORG &C200 DB "NC100PRG"

ORG &C210 JP start DB "PROGRAM NAME",0

ORG &C220 [Your program goes here]

The available workspace is from &A000 to &A3FF, but it is shared with other

programs so never assume certain data is left where you put it if another application

has been executing in the meantime. You can also use &A800 to &AFFF, but beware

that this well be overwritten if the File Selector is called.

For interaction with the rest of the system, add-on applications MUST handle Yellow

events. For example: either exit when [Stop] is pressed or check for a yellow event

with KMGETYELLOW, and return if the carry flag is set.

Serious developers may be interested in contacting Ranger Computers on 0604

589200 as they can produce a device that looks like RAM to a PC but ends in a

PCMCIA header plug that connects directly to the Notepad's card slot and the PC

RAM appears as card RAM to the Notepad.

Another alternative is the excellent shareware cross assembler, TASM, which can

assemble code for 10 different microprocessors, including the Z80. You should be

able to get hold of a copy from your favourite shareware library, or you can

download it from the Assembler library in the IBMPRO forum on CompuServe, and

it may be available on other bulletin boards.

In conjunction with the Lapcat lead and software available from Arnor (See Appendix

6), you will then be able to assemble object files and transfer them directly to a RAM

card in your Notepad. But make sure the card is freshly formatted before doing so, to

ensure that the code is stored in the first 16K of RAM.

USING THE NOTEPAD'S LCD DISPLAY

Because the Z80 is restricted to addressing an area of no more than 64K, if you want

any more RAM or ROM you have to page it in to order. This way you can have 16K

Advanced User Guide 147

blocks of memory containing code or data for different purposes and then use a bank

switching device to map blocks in when they are needed.

And, of course, this is what the NCI00 does. In fact it has 256K ROM and 64K

RAM of memory built in so it uses very sophisticated memory management

techniques to page everything into the small 64K area at exactly the right times.

Although the screen is only 4K long, that is still too precious an amount of memory

to give up permanently, so even the screen ram is only paged in when it has to be

written to or read from (although the LCD display does have permanent access to it,

in order to keep it visible all the time).

For technical reasons only 16K chunks of memory can be switched in at any one

time, so when you select the screen you get an extra 12K mapped in containing other

data. All you need be concerned about though, is the top 4K area as this is where you

will always find the screen.

The RAM containing the screen can be mapped into any of the four 16K locations in

the 64K memory map by issuing the correct OUT statement to ports &10-&13, Like

this:

LD A, 67 ; This signifies the screen ram block

OUT (£10), A ; for £0000, or:

OUT (fill), A ; for S4000, or:

OUT (£12), A ; for £8000, or:

OUT (£13) ,A ; for fiCOOO

However, it is strongly recommended that BBC Basic programs should use the final

one of these calls in order to map the screen in at &C000 so that BBC Basic's own

RAM area is not affected. In fact, as it is only 4K long, the screen is mapped in at

&F000 and, because the other 12K is reserved, make sure you do sufficient bounds

checking so that screen writes don't stray into it.

In addition, the bank switching registers are write-only. Therefore, for the NC100 to

know its current status at any time it must refer to its own copy of the various

settings. These are held at locations &B000-&B003. So, before you write to any of

the ports you must first read the value from the relevant location and store a copy

(perhaps by pushing it on the stack), then write your new value back to this location,

and only then write the value to the port, like this:

LD A, (&B003)

PUSH AF

LD A, 67

LD (£B003),A

OUT (£13), A

To put a screen back from where you got it, pop the value off the stack (or get it

from where you stored it) and write it to the location before also writing it to the

bank switching port, like this:

148 The Amstrad Notepad

POP AF

LD (&B003),A

OUT (£13), A

RET

Courageous users may wish to experiment with using values other than 67 and

mapping the NClOO's various RAM/ROM blocks somewhere in memory (such as at

&4000, so that you can still use the screen) in order to have a peek at how the

computer is organised. But this is not recommended for the faint-hearted! You can

also examine the RAMs and ROMs using the MM and DU commands available from

Protext's command mode, described in Chapter 2.

Anyway, down to the nitty-gritty. Here's some example code for directly accessing

the video ram on a pixel level. In order to access a given X,Y location on the screen

you have to perform the following steps:

□ Save the old memory block

□ Map in the video memory

□ Multiply the Y pixel address (0 to 63) by 64

□ Add on the X byte address (0 to 60)

□ OR with &70 to convert to address between &F000 and &FFFF

□ Read from or write to the eight pixels pointed to

□ Restore the old memory block

In the following example HL is the Y pixel. H is always zero and L has a value

between 0 and 63, inclusive, while DE is the X offset which ranges from 0 to 479.

This program will display a single pixel towards the top right-hand side of the

display:

10 CLS

20 DIM A% S100

30 PROCassemble

40 CLS: CALL A%

50 END

60 DEF PROCassemble

70 FOR PASS=0 TO 3 STEP 3

80 P%=A%

90 [

100 OPT PASS

110 :

120 . start

130 :

140 LD HL,3

150 LD DE,377

160 :

170 ; Save memory, and set video memory

180 :

190 LD A, (&B003)

200 PUSH AF

Advanced User Guide 149

210 LD A, 67

220 LD (&F003) ,A

230 OUT (-13) , A

240 :

250 ; Multiply HL by 64 (bytes per pixel line)

260 :

270 LD H,0

280 ADD HL,HL

290 ADD HL,HL

300 ADD HL,HL

310 ADD HL,HL

320 ADD HL,HL

330 ADD HL,HL

340 :

350 ; Determine which bit to act on

360 :

370 LD A,E

380 AND 7

390 LD B,A

400 LD A, 0

410 SCF

420 :

430 .power

440 :

450 RRA

460 DJNZ power

470 PUSH AF

480 :

490 ; Divide DE by 8 to get pixel address

500 :

510 SRL D

520 RR E

530 SRL D

540 RR E

550 SRL D

560 RR E

570 :

580 ; Add on X address to start of pixel line

590 :

600 ADD HL,DE

610 :

620 ; Convert to range &F000-SFFFF

630 :

640 LD A,H

650 OR £F0

660 LD H,A

670 :

680 ; HL now points at 8 bits of screen memory, so write pixel

690 :

700 POP AF

710 LD B, (HL)

720 OR B

730 LD (HL) ,A

740 :

750 ; Now clean up

760 :

770 POP AF

780 LD (6B003) ,A

790 OUT (&13) ,A

800 RET

150 The Amstrad Notepad

810]

820 NEXT

830 ENDPROC

Most of this program is pretty self-explanatory, but there are two bits that need

further discussion. Take a look at lines 370-470. Here, the E register is copied to A

and then ANDed with 7. This leaves it with only the three right-most bits (a number

between 0 and 7).

The contents of A are then transferred to B, A is zeroed, the carry flag is set, and the

loop called power rotates A right the number of times stored in B. This moves the

pixel to be set to the correct location. The RRA command moves all the bits in A to

the right, at the same time placing the contents of the carry flag in bit 7 (on the left),

and the contents of bit 0 into the carry flag.

The value in A is then stored by PUSHing AF on to the stack where it is later

retrieved at line 700 and ORed with the contents of the location pointed to by HL. If

you wanted to clear the pixel you would first issue an XOR &FF and then AND with

B instead.

E.D4
»05

F5
3E 43
32 03 BO
D3 13

PUSH RF
LD R.67

(SB003)
JT ($13),
Mu 1 1 i p I y

P
y HL by 64 (bytes per p i xe I I i ne)

Escape at I ine 270

Assembling the example pixel setting program

4

THE NOTEPAD'S

INPUT/OUTPUT PORTS

video RAM

RAM

stack/variables

RAM

RAM

RAM

16K code/data sections always mapped to &C000

cooo

Protext Dictionary Con Calc Addr Diary BBC

data trol book BASIC

1 & 2 6 blocks

\
B000 | common RAM (accessible by all programs)

/

8000

4000

OS- remaps high

Startup code

PLS

spell

checking

code

The NClOO's memory map

You will not often need to make use of the Input/Output ports on the Notepad, but all

the details you need are here for when you do, including mapping the video RAM

into the core 64K of RAM, determining the battery and memory card status,

communications configuration and so on.

&00 WRITE ONLY START ADDRESS OF DISPLAY MEMORY

bits 0-3 Not used

bit 4 Address line &0C

bit 5 Address line &0D

bit 6 Address line &0E

bit 7 Address line

752 The Amstrad Notepad

On reset this is set to 0.

The display memory for the 8-line NC computers consists of a block of 4096 bytes

where the first byte defines the state of the pixels in the top left-hand corner of the

screen.

A 1 bit set means the pixel is set to black. The first byte controls the first eight dots

with bit 7 controlling the bit on the left. The next 59 bytes complete the first raster

line of 480 dots.

The bytes which define the second raster line start at byte 64 to make the hardware

simpler so bytes 60, 61, 62 and 63 are wasted. There are then another 64 bytes (with

the last four unused) which define the second raster line and so on straight down the

screen.

So the layout is like this:

BYTE 00 BYTE 01 BYTE 02

Bit No. 76543210 76543210 76543210

Pixel No. 00000000 00111111 11112222

01234567 89012345 67890123

Character No. 0 0- 0 — 0

(for 1 row) 0 1- 2 —3

This continues on for subsequent lines. For example, the second line is the range of

bytes 64-127, and line three is 128-191, and so on. You may also have noticed that

displayed characters are only six pixels wide, so slightly unusual routines are required

to read and write them, although you can use the Jump Block calls to do this for you.

&10-&13 READ/WRITE: MEMORY MANAGEMENT CONTROL

These addresses control the NC 100's bank switch capabilities. Writers of external

applications will most like use them for accessing the display RAM for direct screen

reading and writing. Port:

10 controls 0000-3FFF

11 controls 4000-7FFF

12 controls 8000-BFFF

13 controls C000-FFFF

On reset all are set to 0. For each address the byte written has the following meaning:

bits 0-5 determine address lines 14-19.

bit 6 selects internal RAM

bit 7 selects card RAM

Advanced User Guide 153

If neither bit 6 or bit 7 are set then ROM is selected. Therefore:

600 is the first 16K of ROM

601 is the second 16K...

640 is the first 16K of internal RAM,

641 is the second 16K...

680 is the first 16K of card RAM

681 is the second 16K...

So, for example, if you want to switch the third 16K of internal RAM so the

processor sees it at &4000-&7FFF you would output the value 42 to I/O address &11.

42 has bits 6 set to 1 and bit 7 to 0, while bits 0-5 are 00010b which is the third 16K

of internal RAM.

Therefore, to switch the screen (which is the fourth 16K of internal RAM) into the

fourth 16K of mapped RAM so that the processor sees it between &C000 and

&FFFF, you would output the value &43 (67 decimal) to port &13.

Here is a broad overview of the NClOO's layout and the values required to map each

16K block in to one of the four areas of memory:

&00 ROM- Operating System

&01 ROM - Control code

&02 ROM- Calculator

&03 ROM- Address book

&04 ROM- Diary

&05 ROM- BBC Basic

&06 ROM- Protext

&07 ROM - Protext

&08 ROM - Spell Check Code

&09 ROM- Spell Check Code

&0A ROM - Dictionary

&0B ROM- Dictionary

&0C ROM- Dictionary

&0D ROM - Dictionary

&0E ROM - Dictionary

&0F ROM- Dictionary

&40 RAM - Internal RAM

&41 RAM - Internal RAM

&42 RAM - Internal RAM

&43 RAM - Internal RAM - Including Video RAM

&80- RAM - Card RAM (up to 64 16K blocks)

154 The Amstrad Notepad

&20 WRITE ONLY MEMORY CARD WAIT STATE CONTROL

bit 7 = 1 for wait states, 0 for no wait

On reset this is set to 1. The bit should be set if the card RAM/ROM is 200nS or

slower.

&30 WRITE ONLY BAUD RATE

bits 0-2 set the baud rate as follows:

000 = 150

001 = 300

010 = 600

011 = 1200

100 = 2400

101 = 4800

110 = 9600

111 = 19200

bit 3 UART clock and reset: l=off, 0=on

bit 4 uPD471 1 line driver: l=off, 0=on

bit 5 not used

bit 6 parallel interface Strobe signal

bit 7 select card register: l=common, 0=attribute

On reset all data is set to 1. If programming the UART direcdy ensure that TxD clock

is operating xl6.

&40 WRITE ONLY PARALLEL INTERFACE DATA

The byte written here is latched into the parallel port output register. To print it you

must then take the Strobe signal (I/O address 30 bit 6) low and then high again. If the

printer sends ACK this may generate an IRQ if the mask bit is set in I/O address 60 -

IRQ mask.

&50-&53 WRITE ONLY SOUND CHANNELS PERIOD CONTROL

650 channel A period low

651 channel A period high

652 channel B period low

653 channel B period high

On reset all data is set to &FF. The top bit in the high byte (&51 and &53) switches

the respective sound generator on or off: l=off, 0=on. The frequency generated is

determined as:

Advanced User Guide 155

Frequency = 307,200

data

So if the data word programmed into &50 and &51 was &7800 (that is, &50=0,

&51=78) then the frequency generated would be:

Frequency = 307,200 ■ 307,200 = 10Hz

S7800 30,720

&60 WRITE ONLY INTERRUPT REQUEST MASK

bit 0 Rx Ready from UART

bit 1 Tx Ready from UART

bit 2 ACK from parallel interface

bit 3 Key Scan interrupt (every lOmS)

bits 4-7 Not used

On reset all bits are 0. For each bit: l=allow that interrupt source to produce IRQs,

Ointerrupt source is masked.

&70 WRITE ONLY POWER OFF CONTROL

bit 0 1 = no effect, 0 = power off

bits 1-7 Not Used

On reset this is set to 1.

&90 READ/WRITE IRQ STATUS

bit 0 Rx Ready interrupt

bit 1 Tx Ready interrupt

bit 2 ACK from parallel interface

bit 3 Key scan

bits 4-7 Not used

When an interrupt occurs this port should be read to determine its source. The bit will

be set to 0 to identify the interrupting device. The interrupt can then be cleared by

writing 0 to that bit.

&A0 READ ONLY MEMORY CARD/BATTERY STATUS

bit 0 Parallel interface ACK: 1 if ACK

bit 1 Parallel interface BUSY: 0 if busy

bit 2 Lithium battery: 1 if less than 2.7 Volts

bit 3 Alkaline batteries: 1 if less than 3.2 Volts. (Although tests show this may

be nearer to 4.2 volts in practice).

156 The Amstrad Notepad

bit 4 RAM card battery: 1 if battery is OK

bit 5 Mains Adaptor: 1 if less than 4 Volts

bit 6 Card write protected: 1 = yes, 0 = no

bit 7 Memory card present: 0 = yes, 1 = no

&B0-&B9 READ ONLY KEYBOARD DATA

Each key of the 64 on the keyboard will set a bit in one of these bytes while pressed.

The gate array scans the keyboard every lOmS and then generates an interrupt. The

program should then read these 10 I/O locations to determine which key has been

pushed. When I/O address &B9 is read the key scan interrupt is cleared automatically

and the next scan cycle will start from &B0.

&C0 READ/WRITE UART CONTROL/DATA

&C0 UART data register

&C1 UART status/control register

The UART is the NEC uPD71051. Programmers are advised to study the data sheet

for that chip for more information. The Serial interface requires that the uPD4711 line

driver chip be turned on by writing a 0 to bit 4 of I/O address &30. While turned on,

power consumption increases so this should only be done when necessary. Calling

PADINiTSERIAL (&B85A) first will ensure no bytes are lost when writing.

&D0 READ/WRITE REAL TIME CLOCK CHIP (TM8521)

&D0-&DC Data

&DD Control register

&DE Control register (Write only)

&DF Control register (Write only)

See the chip data sheet for more information.

THE JUMPBLOCK ENTRIES

Most of the following routines return with the carry flag set if successful and, unless

otherwise stated, you should assume that AF is corrupt on return and that other

registers are preserved.

Where you see All registers preserved this includes the flags, but NOT the alternate

registers. In fact the alternate register contents can NEVER be assumed to be

preserved as they are used as scratch registers in time-critical routines.

To use any one of these routines just load the registers as described and then call the

relevant address. Although the running of a routine may involve a different ROM

bank being switched in, this mechanism is invisible to the caller. So, for example, to

print a capital A you could use the following (pretty useless, but explanatory)

example:

10 CLS

20 txtoutput=£B833

30 FOR pass=0 TO 3 STEP 3

40 [

50 OPT pass

60 LD A,ASC("A")

70 CALL txtoutput

80 RET

90]

100 NEXT

The result of calling SELECTFILE (&B8C3)

755 The Amstrad Notepad

KEYBOARD FUNCTIONS

EDITBUF - &B800

Action:

A line editor with options. A zero-terminated string may be passed in buffer (HL).

This will display the initial contents.

Entry conditions:

HL: Pointer to input buffer

B: Size of buffer (excluding terminating zero)

A: Rags:

bit 2 = 1 - Up and down cursor keys terminate input

bit 3 = 1 - Input not echoed

bit 4 = 1 - Delete trailing spaces

bit 5 = 1 - Edit unless characters entered

bit 6 = 1 - Dotty background (character 176)

Other bits must be set to zero.

Exit conditions:

c=0 & z=l [Stop] pressed

c=l & z=l Empty string input

c=l & z=0 At least one character entered

HL Preserved

BC Last key token (or -1 if [Stop] used to terminate)

KMCHARRETURN - &B803

Action:

Returns a token to the keyboard buffer. This is useful for determining which token is

due next without removing it from the buffer, by first reading it and then returning it.

Entry conditions:

BC The token

Exit conditions:

All registers preserved

KMREADKBD - &B806

Action:

Gets a key token if there is one. It does not wait but checks put-back characters and

expands macros. It also returns tick event tokens, if enabled.

Advanced User Guide 159

Entry conditions:

None

Exit conditions:

c=l: BC=token (B=0 for simple character)

c=0: No key token available

KMSETEXPAND - &B809

Action:

Defines a macro string.

Entry conditions:

BC: Macro token (between 256 and 383)

HL: Points to new macro string (the first byte is the length, followed by the

string, which need not be zero terminated)

Exit conditions:

c=l Macro defined successfully

c=0 Insufficient room in the buffer (The buffer size is user configurable)

KMSETTICKCOUNT - &B80C

Action:

Enables the ticker event. There are 100 ticks per second. When a ticker event occurs

a special value of 941 is returned by KMREADKBD (&B806).

Entry conditions:

HL: Number of ticks before first event

DE: Number of ticks between events

Exit conditions:

All registers preserved

KMWAITKBD - &B80F

Action:

Waits for a key token. It uses KMREADKBD (B806) and checks put-back characters

and expands macros. It also returns tick event tokens if enabled.

Entry conditions:

None

Exit conditions:

c=l: BC=Token (B=0 for a simple character)

160 The Amstrad Notepad

READBUF - &B812

Action:

A line editor. See also EDITBUF (&B800).

Entry conditions:

HL: Pointer to input buffer (empty)

B: Size of buffer (excluding terminating zero)

Exit conditions:

c=0 & z=l: [Stop] pressed

c=l & z=l: Empty string input

c=l & z=0: At least one character entered

BC: Last key token (or -1 if [Stop] used to terminate)

HL: Preserved

TESTESCAPE - &B815

Action:

Tests whether an Escape key has been pressed (either [Stop] or [Function]). It waits

for a key if one is found in the keyboard buffer.

Entry conditions:

None

Exit conditions:

c=l: No Escape key in buffer, or

Escape key in buffer but [Stop] not pressed

c=0: Escape key in buffer and [Stop] then pressed

A: Preserved

SCREEN DISPLAY FUNCTIONS

COLl - &B818

Action:

If the cursor is at the start of a line it does nothing, otherwise it moves the cursor to

the start of next line (within the current window).

Advanced User Guide 161

Entry conditions:

None

Exit conditions:

All registers preserved

COL1TEXT - &B81B

Action:

The same as TEXTOUT (&B81E), but it calls COL1 (&B818) first.

Entry conditions:

None

Exit conditions:

All registers preserved

TEXTOUT - &B81E

Action:

Displays a string.

Entry conditions:

HL: Pointer to a zero-terminated string.

WARNING - HL must not point into an upper ROM!

Exit conditions:

All registers preserved

TEXTOUTCOUNT - &B821

Action:

The same as TEXTOUT (&B81E), but returns a character count in B.

Entry conditions:

None

Exit conditions:

B: Character count

TXTCLEARWINDOW - &B824

Action:

Clears the current window and moves the cursor to the top-left of it.

162 The Amstrad Notepad

Entry conditions:

None

Exit conditions:

All registers preserved

TXTCUROFF - &B827

Action:

Removes the cursor from the screen.

Entry conditions:

None

Exit conditions:

All registers preserved

TXTCURON - &B82A

Action:

Displays the cursor on the screen.

Entry conditions:

None

Exit conditions:

All registers preserved

TXTGETCURSOR - &B82D

Action:

Returns the cursor position.

Entry conditions:

None

Exit conditions:

H: Column (between 0 and 79)

L: Row (between 0 and 7)

TXTGETWINDOW - &B830

Action:

Returns the window coordinates.

Advanced User Guide 163

Entry conditions:

None

Exit conditions:

H: Left column (between 0 and 79)

L: Top row (between 0 and 7)

D: Right column (between 0 and 79)

E: Bottom row (between 0 and 7)

c=0: Window is whole screen

c=l: A smaller window has been created

TXTOUTPUT - &B833

Action:

Displays a character or acts on a control code.

Entry conditions:

A: character:

A = 7: Beep

A = 10: Line Feed

A = 13: Carriage Return

All other values are displayed as a character (the same as the PC

character set)

Exit conditions:

All registers preserved

TXTSETCURSOR - &B836

Action:

Moves the cursor to a new position.

Entry conditions:

H: Column (between 0 and 79)

L: Row (between 0 and 7)

Exit conditions:

All registers preserved

TXTSETWINDOW - &B839

Action:

Defines a new window.

164 The Amstrad Notepad

Entry conditions:

H: Left column (between 0 and 79)

L: Top row (between 0 and 7)

D: Right column (between 0 and 79)

E: Bottom row (between 0 and 7)

Exit conditions:

All registers preserved

TXTWRCHAR - &B83C

Action:

Displays a character. Control codes are also displayed as characters rather than being

acted upon.

Entry conditions:

A: Character. All values are displayed as per the PC character set.

Exit conditions:

All registers preserved

TXTBOLDOFF - &B83F

Action:

Resets the bold attribute. The next time text is written to the screen it will be without

this attribute.

Entry conditions:

None

Exit conditions:

All registers preserved

TXTBOLDON - &B842

Action:

Sets the bold attribute. The next time text is written to the screen it will be with this

attribute.

Entry conditions:

None

Exit conditions:

All registers preserved

Advanced User Guide 165

TXTINVERSEOFF - &B845

Action:

Resets the inverse attribute. The next time text is written to the screen it will be

without this attribute.

Entry conditions:

None

Exit conditions:

All registers preserved

TXTINVERSEON - &B848

Action:

Sets the inverse attribute. The next time text is written to the screen it will be with

this attribute.

Entry conditions:

None

Exit conditions:

All registers preserved

TXTUNDERLINEOFF - &B84B

Action:

Resets the underline attribute. The next time text is written to the screen it will be

without this attribute.

Entry conditions:

None

Exit conditions:

All registers preserved

TXTUNDERLINEON - &B84E

Action:

Sets the underline attribute. The next time text is written to the screen it will be with

this attribute.

Entry conditions:

None

Exit conditions:

All registers preserved

166 The Amstrad Notepad

PARALLEL AND SERIAL PORT FUNCTIONS

MCPRINTCHAR - &B851

Action:

Sends a character to the printer.

Entry conditions:

A: Character

Exit conditions:

c=l: Successful

c=0: Not sent

A: Preserved

MCREADYPRINTER - &B854

Action:

Tests whether the printer is ready.

Entry conditions:

None

Exit conditions:

c=0: Busy

c=l: Ready

A: Preserved

MCSETPRINTER - &B857

Action:

Sets the printer type to be used by MCPRINTCHAR (&B851) and MCREADYPRIN

TER (&B854).

Entry conditions:

A: Printer type:

0 = Parallel

1 = Serial

Exit conditions:

All registers preserved

Advanced User Guide 167

PADINITSERIAL - &B85A

Action:

Initialises the serial port using the global configured settings and turns on the UART

and 4711. To prolong battery life, do not call this until needed.

Entry conditions:

None

Exit conditions:

All registers preserved

PADINSERIAL - &B85D

Action:

Reads a character from the serial port.

Entry conditions:

None

Exit conditions:

c=l: Successful, A=character

c=0: No character read

PADOUTPARALLEL - &B860

Action:

Sends a character to the parallel port.

Entry conditions:

A: Character

Exit conditions:

c=l: Successful

c=0: Not sent

A: Preserved

PADOUTSERIAL - &B863

Action:

Sends a character to the serial port.

Entry conditions:

A: Character

168 The Amstrad Notepad

Exit conditions:

c=l:

c=0:

A:

Successful

Not sent

Preserved

PADREADYPARALLEL - &B866

Action:

Tests whether the parallel port is ready.

Entry conditions:

None

Exit conditions:

c=0: Busy

c=l: Ready

A: Preserved

PADREADYSERIAL - &B869

Action:

Tests whether the serial port is ready.

Entry conditions:

None

Exit conditions:

c=0: Busy

c=l: Ready

A: Preserved

PADRESETSERIAL - &B86C

Turns off the UART and 4711. To prolong battery life call this as soon as you have

finished using the serial port.

Entry conditions:

Action:

None

Exit conditions:

All registers preserved

Advanced User Guide 169

PADSERIALWAITING - &B86F

Action:

Tests whether there is a character waiting to be read from the serial port.

Entry conditions:

None

Exit conditions:

c= 1 : Character waiting

c=0: No character waiting

CLOCK FUNCTIONS

PADGETTICKER - &B872

Action:

Returns the address of a four-byte 100Hz ticker.

Entry conditions:

None

Exit conditions:

HL: The address of the least significant byte (first of four)

PADGETTIME - &B875

Action:

Reads the time and date from the Real Time Clock.

Entry conditions:

HL: Points to a seven-byte buffer to use:

Exit conditions:

HL: Preserved. The buffer contains seven bytes of data:

byte 0 = year (low)

byte 1 = year (high)

byte 2 = month

byte 3 = date

byte 4 = hour

byte 5 = minute

byte 6 = second

170 The Amstrad Notepad

PADSETALARM - &B878

Action:

Sets the ALARM date and time (within the next month).

Entry conditions:

HL: Points to a three-byte data area:

byte 0 = date

byte 1 = hour

byte 2 = minute

Exit conditions:

All registers preserved

PADSETTIME - &B87B

Action:

Sets the Real Time Clock date and time.

Entry conditions:

HL: Points to a seven-byte data area:

byte 0 = year (low)

byte 1 = year (high)

byte 2 = month

byte 3 = date

byte 4 = hour

byte 5 = minute

byte 6 = second

Exit conditions:

All registers preserved

MEMORY ALLOCATION FUNCTIONS

HEAPADDRESS - &B87E

Action:

Obtains the address of a memory block for a given memory handle.

Entry conditions:

DE: Memory handle

Advanced User Guide 171

Exit conditions:

HL: Pointer to memory block

HEAPALLOC - &B881

Action:

Allocates a block of memory from the heap.

Entry conditions:

DE: Number of bytes to allocate

Exit conditions:

HL=0: 0 if failed

HLoO: Memory handle in the range 1-63

NOTE: HEAPADDRESS (&B87E) must be used to get a pointer to the memory

block Unless the block is locked with HEAPLOCK (&B887). HEAPADDRESS

(&B87E) must be called each time the memory block is used as it may have moved!

HEAPFREE - &B884

Action:

Frees a block of memory.

Entry conditions:

DE: Memory handle, returned by HEAPALLOC (B881) or HEAPREALLOC (B88D)

Exit conditions:

HL: Preserved

BC: Preserved

NOTE: The memory handle passed must be a valid handle returned by

HEAPALLOC (B881) or HEAPREALLOC (B88D). This is not validated.

HEAPLOCK - &B887

Action:

Locks or unlocks a memory block.

Entry conditions:

DE: Memory handle

BC=0: The block is locked. It will not be moved until unlocked so fixed

addresses can be used as pointers into the block

BC<>0: The block is unlocked

172 The Amstrad Notepad

HEAPMAXFREE - &B88A

Action:

Returns the largest block size that can be allocated.

Entry conditions:

None

Exit conditions:

HL: Largest free block size in bytes

HEAPREALLOC - &B88D

Action:

Changes the size of an allocated memory block.

Entry conditions:

DE: Memory handle

BC: New size for memory block

Exit conditions:

HL=0: Failed. The old block will not be freed but could have moved.

HLoO: Successful

NOTE: If the block is being expanded, it must be assumed that the base of the

memory block will be moved (even if the block cannot actually be expanded), so

HEAPADDRESS (&B87E) must be called afterwards. If the block is being

contracted, the base will not move.

FILE I/O FUNCTIONS

FCLOSE - &B890

Action:

Closes a file.

Entry conditions:

DE: File handle

Exit conditions:

c=l: Successful

c=0: Failed

Advanced User Guide 173

FERASE - &B893

Action:

Erases a file.

Entry conditions:

HL: Zero-terminated filename

Exit conditions:

c=l: Successful

c=0: Error (file not found)

FINBLOCK - &B896

Action:

Reads a block from a file.

Entry conditions:

DE: File handle

HL: Buffer

BC: Number of bytes to read (greater than 0)

Exit conditions:

c=l: End of file not reached

c=0: Eof (or error?)

BC: Number of bytes read

HL: Address after last byte read

FINCHAR - &B899

Action:

Reads a byte from a file.

Entry conditions:

DE: File handle

Exit conditions:

c=l: Successful, A=character

c=0: A corrupt if end of file reached

Other registers preserved

FINDFIRST - &B89C

Action:

Finds the first file. SETDTA (&B8C6) must have been called first.

174 The Amstrad Notepad

Entry conditions:

None

Exit conditions:

HL=0: No files

HLoO: HL points to a file info structure. The first item in the structure is the

filename, zero-terminated (up to 12 characters long), offset 13 is the

attribute byte - see FGETATTR (&B8CF) for further details on

attributes. Offsets 14 and 15 are the file size in bytes (low, high)

FINDNEXT - &B89F

Action:

Finds the next file. FINDFIRST (&B89C) must have been called first.

Entry conditions:

None

Exit conditions:

HL=0: No more files

HLoO: HL returns info as with FINDFIRST (&B89C)

FOPENIN - &B8A2

Action:

Opens a file for input.

Entry conditions:

HL: Points to zero-terminated filename

Exit conditions:

c=l: Successful, DE=file handle

c=0: Failed (file not found), DE=Corrupt

A: Corrupt

Other registers preserved

FOPENOUT - &B8A5

Action:

Opens a file for output.

Entry conditions:

HL: Points to zero-terminated filename

Advanced User Guide 175

Exit conditions:

c=l: Successful, DE=file handle

c=0: Failed (out of memory/too many files/file exists), DE=Corrupt

A: Corrupt

Other registers preserved

FOPENUP - &B8A8

Action:

Opens a file for input and output. The file must already exist.

Entry conditions:

HL: Points to zero-terminated filename

Exit conditions:

c=l: Successful, DE=file handle

c=0: File not found, DE=Corrupt

A: Corrupt

Other registers preserved

FOUTBLOCK - &B8AB

Action:

Writes a block to a file.

Entry conditions:

DE: File handle

HL: Buffer

BC: Number of bytes to write (greater than 0)

Exit conditions:

c=l: Successful

c=0: Error

BC: Number of bytes written

HL: Address after last byte written

FOUTCHAR - &B8AE

Action:

Writes a byte to a file.

Entry conditions:

DE: File handle

A: Character

176 The Amstrad Notepad

Exit conditions:

c=l: Successful

c=0: A=Corrupt if end of file reached

Other registers preserved

FRENAME - &B8B1

Action:

Renames a file.

Entry conditions:

HL: Points to zero-terminated old filename

DE: Points to zero-terminated new filename

Exit conditions:

c=l: Successful

c=0: Error (file not found)

FSEEK - &B8B4

Action:

Moves the file pointer to a position within a file.

Entry conditions:

DE: File handle

BC: Offset from start of file

Exit conditions:

c=l: Successful

c=0: Offset past end of file (pointer not changed)

FSIZE - &B8B7

Action:

Finds the size of a file.

Entry conditions:

HL: Points to zero-terminated filename

Exit conditions:

c=l: HL=size in bytes

c=0: Not found

Advanced User Guide 177

FSIZEHANDLE - &B8BA

Action:

Finds the size of an open file.

Entry conditions:

DE: File handle

Exit conditions:

HL: Size in bytes

FTELL - &B8BD

Action:

Returns the value of the file pointer.

Entry conditions:

DE: File handle

Exit conditions:

HL: Current file position

FTESTEOF - &B8C0

Action:

Tests whether the end of a file has been reached.

Entry conditions:

DE: File handle

Exit conditions:

c=l: Noteof

c=0: Eof

SELECTFILE - &B8C3

Action:

Displays the file selector (clearing the screen first), shows all files and allows a

selection to be made using the cursor keys and [Return]. In addition [Del->] and

[<-Del] can be used to delete files.

An undocumented feature of this function is the ability to press [Shift] [Ctrl] [H] to

override the effect of the Hidden file attribute and make these files instantly visible.

See FGETATTR (&B8CF) for further details on attributes.

178 The Amstrad Notepad

Entry conditions:

None

Exit conditions:

c=l: A was file selected ([Return] pressed), HL=filename

c=0: [Stop] was pressed

SETDTA - &B8C6

Action:

Sets the memory block to be used by FINDFIRST (&B89C) and FINDNEXT

(&B89F).

Entry conditions:

DE: Address of a 36-byte buffer which must be in common RAM

(&8000h-&BFFF).

Exit conditions:

All registers preserved

MISCELLANEOUS FUNCTIONS

FDATESTAMP - &B8C9

Action:

Sets a file's date and time to the current date and time.

Entry conditions:

HL: Zero terminated filename

Exit conditions:

c=l: Successful

c=0: File not found

FGETATTR - &B8CF

Action:

Returns the attribute byte of a file.

Advanced User Guide 179

Entry conditions:

HL: Zero-terminated filename

Exit conditions:

c=l: A=attribute

bit 0 = System (for in-built applications)

bit 1 = Hidden

bit 2 = Basic

bit 3 = Binary

bit 4 = Reserved

bit 5 = Reserved for internal use

bit 6 = Reserved

bit 7 = Reserved

System files are generally those created by the Diary, Address Book and other in-built

applications. They are also generally saved as Hidden files except where the user

needs to be able to select them.

Protext saves all files without any attributes so that they can be seen and selected by

all applications. This allows you to write programs in Protext, then enter BBC Basic

and *EXEC them into memory - providing an easier way of editing code.

All BBC Basic programs are saved with the Basic attribute set.

If the user has not configured the NC100 to display file dates and times via the

System Setting menu, if a file has the Basic attribute set, under BBC Basic

SELECTFELE (&B8C3) will display it but if the Hidden attribute is set, it will not.

When not in BBC Basic, the Protext file selector will not display files with a Basic or

Hidden attribute, so you can hide selected files from non-BBC Basic applications.

However, if the user has elected to have file dates and times displayed, all files

except those with a Hidden attribute will be displayed whether in BBC Basic or not.

c=0: Not found

HL: Preserved

FSETATTR - &B8CC

Action:

Sets the attribute byte for a file opened for output. If the file is open for input only

there is no effect

Entry conditions:

DE: File handle

C: Attribute byte:

180 The Amstrad Notepad

Exit conditions:

c=l: Successful

c=0: File not found

KMGETYELLOW - &B8D2

Action:

Ascertains whether a Yellow event (so called because the [Function] key is coloured

yellow) is pending. A Yellow event occurs:

□ When the user has pressed one of the [Function] [Key] combinations that cause an

immediate context switch ([Function] [Red], [Function] [Green], [Function] [Blue],

[Function] [Menu]), or

□ When the machine is powered up and (because the option to preserve context has

not been set) needs to return to the main menu.

Entry conditions:

None

Exit conditions:

c=l: BC=token if a Yellow event is pending. An application should exit

conditions: normally as quickly as possible Any unsaved files should be

saved automatically!

c=0: BC=0 if no Yellow event is pending

NOTE: Each of the yellow event keys return the [Stop] token (&2FCh). An

application should call KMGETYELLOW (&B8D2) whenever an Escape key is read.

This distinguishes between a Yellow event and an ordinary Escape.

KMSETYELLOW - &B8D5

Action:

Sets up a Yellow event. Specialised use only.

Entry conditions:

BC: A yellow event token

Exit conditions:

All registers preserved

LAPCAT RECEIVE - &B8D8

Action:

Reads a character from the parallel port using Lapcat protocol.

Advanced User Guide 181

Entry conditions:

None

Exit conditions:

c=l: Successful, A=character

c=0: No character read

LAPCAT_SEND - &B8DB

Action:

Sends a character to the parallel port using Lapcat protocol.

Entry conditions:

A: Character

Exit conditions:

c=l: Successful

c=0: Error

PADGETVERSION - &B8DE

Action:

Gets the firmware version number.

Entry conditions:

None

Exit conditions:

HL: Version number (times 100). So, 1.03 returns 103

THE SYSTEM VARIABLES

APPOINTS. RfiP
COMMODE 1 .RfiP
C0MM0DE2.RRP
EXTERNfiL.RfiP

LINEDRfitTTfiP
OPT. RfiP
PfiGED ISP, RfiP
PIXTEST.RfiP
QUICKMfiC.RfiP
s.x

s.y

SCRNSfiVE . RfiP
zaptest

Poke &B139 with 0 in Basic and lose the file sizes

Following are some of the more important RAM-based variables used by the

operating system. Amstrad have expressed an intent always to try and use these

locations in subsequent versions of the software, but they are not guaranteeing it. It

would be sensible to perform checks by calling firmware routines which return known

values to selected addresses and only if the correct values are returned for addresses

you wish to use, should you then assume they are available to you.

Alternatively you could contact Amstrad at the following address with any queries

relating to newer versions of the NC series. Write to:

Notepad Project Manager, Amstrad Pic, 169 Kings Road,

Brentwood, Essex, CM14 4EF.

Many of the addresses shown in this section have little or no explanation other than

the name given to them by the program developers. It is entirely up to you to

experiment with them and come to your own decision as to their usefulness.

Thankfully though, many addresses are fully self-evident and will provide you with a

lot of scope for enhancing your own programs.

Advanced User Guide 183

ADDRESS NAME SIZE

&B000 copyofmmuO &01

&B001 copyofmmul &01

&B002 copyofmmu2 &01

&B003 copyofmmu3 &01

&B03B &50

&B08D kbdstatel &0A

&B097 kbdstate2 &0A

&B0A1 padkeybuf &40

&B0E1 padnextin &01

&B0E2 padnextout &01

&B0E3 padbufempty &01

&B0E4 lastkbdstate &02

&B0E6 thiskbdstate &02

&B0E8 caps.state &01

&B112 rptdelay &01

&B113 rptrate &01

&B114 rpttimer &01

&B115 keytorepeat &01

&B116 rptkeystates &01

&B12C soundcounter &01

&B12D soundptr &02

&B132 poweroffminutes &01

&B133 minutesleft &01

&B134 minutecounter &02

&B137 preservecontext &01

&B138 dontpreservecontext &01

&B139 mainprog &01

&B13A currentprinter &01

&B13D wasmenusel &01

&B140 sdumpname &04

COMMENTS

Copy of MMUO

Copy of MMU1

Copy of MMU2

Copy of MMU3

A small stack which is only used in

initialisation. Therefore, you should

be able to use this as a temporary

storage area when code space is

tight.

1 bit per key: l=down, 0=up to

correspond to the matrix.

2nd byte of state

Keyboard buffer

Offset into padkeybuf.

Next character due out

Non-zero if empty.

Saved state

This state

0=off, &FF=on

Keyboard repeat Centiseconds.

Keyboard delay Centiseconds.

Count down timer for key repeat.

Key number.

Shift states.

Non-zero if playing a tune.

Pointer to array of frequency,

duration.

Configured time to power off.

Minutes left

Minute counter

0=return to main screen at power on.

l=don't preserve (diagnostics/

battery).

6=inbasic, 128=inextemal

(foreground program id).

0 for parallel, 1 for serial.

After KMWAITCHAR this is 1 if

menu used, 0 if not.

File names s.a, s.b, s.c and so on -

for screen dumps.

754 The Amstrad Notepad

&B150 d.datebuf &12 Date buffer

&B162 d.asciitime &0C hh:mm:ss

&B16E currentcfg &4C Current configuration parameters

&B1BD g.pos &01 Current column number (charout).

&B258 d.calcmode &01 Non-zero if keyboard in calculator

mode.

&B259 d.kmexplen &01 Expansion string length.

&B25A d.kmexpptr &02 Expansion string pointer.

&B25C d.expbuffer &02 Address of expansion key buffer.

&B25E d.expbufptr &02 Pointer to free byte.

&B260 d.expbufend &02 Last byte in buffer.

&B2A1 macro_buf &100 Macro buffer

&B3A7 - File selector variables...

&B3A7 fs_clicat &01 Non-zero if Cat command, not

Select.

&B3A8 fs_showsizes &01 Non-zero if showing file sizes (pad

default=off).

&B3A9 fs_showsys &01 Non-zero if showing system files.

&B3AA fs_curfile &01 Current file number offset from top

left.

&B3AB fs_topleftfile &01 File number displayed top left.

&B3AC fs_numcols &01 Number of columns

&B3AD fs_colwidth &01 Width of columns

&B3AE fs_numshown &01 Number of columns shown

&B3AF fs_maxfiles &01 Max files that can be shown.

&B3B2 fs_numfilerows &01 Rows of files in CAT command.

&B3B3 fs_starllist &02 Start of file list. Zero if doing

unsorted list.

&B3B5 fs_startdir &02 Start of directory entries.

&B3B9 fs_numfiles &01 Number of files in directory.

&B3BA fsjastshown &01 Last file number currently shown.

Advanced User Guide 185

BBC BASIC MAIN SYSTEM VARIABLES

ADDRESS SIZE COMMENTS

&A000 &100 String accumulator

&A100 &100 String input buffer

&A200 &6C Static variables @% to Z%

&A2DC &02 PAGE

&A2DE &02 TOP

&A2E0 &02 LOMEM

&A2E2 &02 Free space pointer

&A2E4 &02 HIMEM

&A2E6 &02 Current line number

&A2E8 &02 TRACE number

&A2EA &02 AUTO number

&A2EC &02 ON ERROR number

7

RECOVERING FROM

LOCK-OUTS

If you use the Notepad's BBC Basic assembler facilities you are likely to crash the

computer at some point. What usually happens in a crash is you get a complete

lock-out and even turning the computer off and on just results in a blank (or

sometimes black) screen.

Sometimes you can get out of crashes quite quickly and easily by switching off the

Notepad and holding down the [Function] and [Stop] keys while you switch it on

again. However, it does have the effect of completely resetting various settings you

may have set up, such as Preserve Context or Document Transfer, although the time

and date are unaffected.

Unfortunately, there is nothing you can do other than press the [Menu] key and

re-enter your preferred defaults. If this doesn't work you may find that the

documented reset facility may do so - try switching off, pressing [Function] [Stop]

[<-Del] and switching on again while holding these keys down. If it does get you out

of a lock-up and back into the system, this reset will have entirely erased any files or

data held in the Notepad, although all data on any RAM card you may have inserted

will remain untouched.

Occasionally a bug may have a peculiar effect that the [Function] [Stop] procedure

does appear to remedy, in that it returns you to the front menu, but you then find you

cannot re-enter Basic by pressing [Function] [B] because the screen goes completely

blank and nothing happens. However, you may be able to get around this by

switching the Notepad on and off yet again and then pressing [Function] [B] one more

time.

Unfortunately, resetting the Notepad is not always as easy as this because some

crashes appear to lock up the Notepad completely so that no combination of key

presses or reset commands will restore it. In this eventuality you have no recourse

Advanced User Guide 187

other than to remove the four AA batteries, disconnect the power supply lead and

remove the small lithium battery and any RAM card you may have inserted.

Having done this you should press the on/off switch repeatedly for a minute or two in

order to drain any residual power which may be left in the Notepad. Now re-insert all

the batteries, power lead and any RAM card you may be using, and switch on. You

should then have a fully-functional NC100 again. Remember that this procedure

completely erases all data from your computer, including addresses, diary entries and

anything you may have stored in the Private area.

A strong word of caution: If you develop any programs yourself or type in any of the

listings from this book, it is quite likely that you will introduce one or more bugs and

consequently may get a crash that causes you to lose all the data stored in the NCI00.

Therefore it is very important that you first transfer any programs or documents you

need to keep, to another computer using the Lapcat communications lead and

software. It's available from Arnor, the NClOO's developers (see Appendix 6 for full

details). In fact, you would be well advised to regularly back up important files in any

event.

But more than that, if you don't have one, you should strongly consider buying a

RAM card. These come in sizes from 32Kb up to 1Mb and are essential if you wish

to store more than one or two programs or documents at a time. In addition, if you

happen to crash the NCI 00, files stored on the RAM card will almost certainly not be

destroyed and, after resetting the computer, you can re-insert the RAM card and start

using the stored files immediately.

Page 47 of the NC100 user guide offers further information, including how to format

a new RAM card ready for use. The Lapcat communications lead and software and

RAM cards for the NC100 (compatible with the industry standard) are available from

Arnor (see Appendix 6).

THE COMPLETE Z80

INSTRUCTION SET

ADC A,(HL) The contents of the address pointed to by HL and the carry flag are

both added to the contents of A, and the result is then stored in A.

ADC A,(IX+d) The contents of the address pointed to by IX plus displacement d

and the carry flag are both added to the contents of A, and the

result is then stored in A.

ADC A,(IY+d) The contents of the address pointed to by IY plus displacement d

and the carry flag are both added to the contents of A, and the

result is then stored in A.

ADC A,A The contents of A and the carry flag are added to A, and the result

is stored in A.

ADC A,B The contents of B and the carry flag are added to A, and the result

is stored in A.

ADC A,C The contents of C and the carry flag are added to A, and the result

is stored in A.

ADC A,D The contents of D and the carry flag are added to A, and the result

is stored in A.

ADC AJB. The contents of E and the carry flag are added to A, and the result

is stored in A.

ADC A,H The contents of H and the carry flag are added to A, and the result

is stored in A.

ADC AJL The contents of L and the carry flag are added to A, and the result

is stored in A.

ADC A,n The value n and the carry flag are added to A, and the result is

stored in A.

ADC HL,BC The contents of HL and the carry flag are added to BC, and the

result is stored in HL.

Advanced User Guide 189

ADC HL.DE The contents of HL and the carry flag are added to DE, and the

result is stored in HL.

ADC HL,HL The contents of HL and the carry flag are added to HL, and the

result is stored in HL.

ADC HL.SP The contents of HL and the carry flag are added to SP, and the

result is stored in HL.

ADD A,(HL) The contents of the address pointed to by HL are added to A, and

the result is stored in A.

ADD A,(K+d) The contents of the address pointed to by IX plus displacement d

are added to A, and the result is stored in A.

ADD A,(IY+d) The contents of the address pointed to by IY plus displacement d

are added to A, and the result is stored in A.

ADD A,A The contents of A are added to A, and the result is stored in A.

ADD A,B The contents of A are added to B, and the result is stored in A.

ADD A,C The contents of A are added to C, and the result is stored in A.

ADD A,D The contents of A are added to D, and the result is stored in A.

ADD A,E The contents of A are added to E, and the result is stored in A.

ADD A,H The contents of A are added to H, and the result is stored in A.

ADD A.L The contents of A are added to L, and the result is stored in A.

ADD A,n The value n is added to A, and the result is stored in A.

ADD HL,BC The contents of HL are added to BC, and the result is stored in HL.

ADD HL,DE The contents of HL are added to DE, and the result is stored in HL.

ADD HL,HL The contents of HL are added to HL, and the result is stored in HL.

ADD HL,SP The contents of HL are added to SP, and the result is stored in HL.

ADD IX,BC The contents of IX are added to BC, and the result is stored in IX.

ADD IX,DE The contents of IX are added to DE, and the result is stored in IX.

ADD IX.IX The contents of IX are added to IX, and the result is stored in IX.

ADD IX,SP The contents of IX are added to SP, and the result is stored in IX.

ADD IY,BC The contents of IY are added to BC, and the result is stored in IY.

ADD IY,DE The contents of IY are added to DE, and the result is stored in IY.

ADD IY,IY The contents of IY are added to IY, and the result is stored in IY.

ADD IY.SP The contents of IY are added to SP, and the result is stored in IY.

AND (HL) The contents of the address pointed to by HL is logically ANDed

with A, and the result is stored in A.

190 The Amstrad Notepad

AND (IX+d) The contents of the address pointed to by IX plus displacement d is

logically ANDed with A, and the result is stored in A.

AND (IY+d) The contents of the address pointed to by IY plus displacement d is

logically ANDed with A, and the result is stored in A.

AND A A is logically ANDed with A, and the result is stored in A.

AND B B is logically ANDed with A, and the result is stored in A.

AND C C is logically ANDed with A, and the result is stored in A.

AND D D is logically ANDed with A, and the result is stored in A.

AND E E is logically ANDed with A, and the result is stored in A.

AND H H is logically ANDed with A, and the result is stored in A.

AND L L is logically ANDed with A, and the result is stored in A.

AND n The value n is logically ANDed with A, and the result is stored in

A.

BIT 0,(HL) Bit 0 of the contents of the location pointed to by HL is tested. The

Z flag returns its state.

BIT 0,(IX+d) Bit 0 of the contents of the location pointed to by IX plus

displacement d is tested. The Z flag returns its state.

BIT0,(IY+d) Bit 0 of the contents of the location pointed to by IY plus

displacement d is tested. The Z flag returns its state.

BIT 0,A Bit 0 of A is tested. The Z flag returns its state.

BIT 0,B Bit 0 of B is tested. The Z flag returns its state.

BIT 0,C Bit 0 of C is tested. The Z flag returns its state.

BIT 0,D Bit 0 of D is tested. The Z flag returns its state.

BIT 0,E Bit 0 of E is tested. The Z flag returns its state.

BIT 0,H Bit 0 of H is tested. The Z flag returns its state.

BIT 0,L Bit 0 of L is tested. The Z flag returns its state.

BIT 1,(HL) Bit 1 of the contents of the location pointed to by HL is tested. The

Z flag returns its state.

BIT l,(IX+d) Bit 1 of the contents of the location pointed to by IX plus

displacement d is tested. The Z flag returns its state.

BIT l,(IY+d) Bit 1 of the contents of the location pointed to by IY plus

displacement d is tested. The Z flag returns its state.

BIT 1,A Bit 1 of A is tested. The Z flag returns its state.

BIT 1,B Bit 1 of B is tested. The Z flag returns its state.

BIT 1,C Bit 1 of C is tested. The Z flag returns its state.

Advanced User Guide 191

BIT 1 £> Bit 1 of D is tested. The Z flag returns its state.

BIT 1 JE Bit 1 of E is tested. The Z flag returns its state.

BIT 1,H Bit 1 of H is tested. The Z flag returns its state.

BIT 1.L Bit 1 of L is tested. The Z flag returns its state.

BIT 2,(HL) Bit 2 of the contents of the location pointed to by HL is tested. The

Z flag returns its state.

BIT 2,(IX+d) Bit 2 of the contents of the location pointed to by IX plus

displacement d is tested. The Z flag returns its state.

BIT2,(IY+d) Bit 2 of the contents of the location pointed to by IY plus

displacement d is tested. The Z flag returns its state.

BIT 2,A Bit 2 of A is tested. The Z flag returns its state.

BIT 2,B Bit 2 of B is tested. The Z flag returns its state.

BIT 2,C Bit 2 of C is tested. The Z flag returns its state.

BIT 2,D Bit 2 of D is tested. The Z flag returns its state.

BIT 2JE Bit 2 of E is tested. The Z flag returns its state.

BIT 2,H Bit 2 of H is tested. The Z flag returns its state.

BIT 2,L Bit 2 of L is tested. The Z flag returns its state.

BIT 3,(HL) Bit 3 of the contents of the location pointed to by HL is tested. The

Z flag returns its state.

BIT 3,(IX+d) Bit 3 of the contents of the location pointed to by IX plus

displacement d is tested. The Z flag returns its state.

BIT3,(IY+d) Bit 3 of the contents of the location pointed to by IY plus

displacement d is tested. The Z flag returns its state.

BIT 3,A Bit 3 of A is tested. The Z flag returns its state.

BIT 3,B Bit 3 of B is tested. The Z flag returns its state.

BIT 3,C Bit 3 of C is tested. The Z flag returns its state.

BIT 3,D Bit 3 of D is tested. The Z flag returns its state.

BIT 3,E Bit 3 of E is tested. The Z flag returns its state.

BIT 3,H Bit 3 of H is tested. The Z flag returns its state.

BIT 3.L Bit 3 of L is tested. The Z flag returns its state.

BIT 4,(HL) Bit 4 of the contents of the location pointed to by HL is tested. The

Z flag returns its state.

BIT 4,(IX+d) Bit 4 of the contents of the location pointed to by IX plus

displacement d is tested. The Z flag returns its state.

192 The Amstrad Notepad

BIT 4,(IY+d) Bit 4 of the contents of the location pointed to by IY plus

displacement d is tested. The Z flag returns its state.

BIT 4,A Bit 4 of A is tested. The Z flag returns its state.

BIT 4,B Bit 4 of B is tested. The Z flag returns its state.

BIT 4,C Bit 4 of C is tested. The Z flag returns its state.

BIT4JD Bit 4 of D is tested. The Z flag returns its state.

BIT4,E Bit 4 of E is tested. The Z flag returns its state.

BIT 4,H Bit 4 of H is tested. The Z flag returns its state.

BIT4,L Bit 4 of L is tested. The Z flag returns its state.

BIT 5,(HL) Bit 5 of the contents of the location pointed to by HL is tested. The

Z flag returns its state.

BIT 5,(IX+d) Bit 5 of the contents of the location pointed to by IX plus

displacement d is tested. The Z flag returns its state.

BIT 5,aY+d) Bit 5 of the contents of the location pointed to by IY plus

displacement d is tested. The Z flag returns its state.

BIT 5,A Bit 5 of A is tested. The Z flag returns its state.

BIT 5,B Bit 5 of B is tested. The Z flag returns its state.

BIT 5,C Bit 5 of C is tested. The Z flag returns its state.

BIT 5,D Bit 5 of D is tested. The Z flag returns its state.

BIT 5,E Bit 5 of E is tested. The Z flag returns its state.

BIT 5,H Bit 5 of H is tested. The Z flag returns its state.

BIT 5,L Bit 5 of L is tested. The Z flag returns its state.

BIT 6,(HL) Bit 6 of the contents of the location pointed to by HL is tested. The

Z flag returns its state.

BIT 6,(TX+d) Bit 6 of the contents of the location pointed to

displacement d is tested. The Z flag returns its state.

by IX plus

BIT 6,(IY+d) Bit 6 of the contents of the location pointed to

displacement d is tested. The Z flag returns its state.

by IY plus

BIT 6,A Bit 6 of A is tested. The Z flag returns its state.

BIT 6,B Bit 6 of B is tested. The Z flag returns its state.

BIT 6,C Bit 6 of C is tested. The Z flag returns its state.

BIT 6,D Bit 6 of D is tested. The Z flag returns its state.

BIT 6,E Bit 6 of E is tested. The Z flag returns its state.

BIT 6,H Bit 6 of H is tested. The Z flag returns its state.

BIT 6,L Bit 6 of L is tested. The Z flag returns its state.

Advanced User Guide 193

BIT 7,(HL) Bit 7 of the contents of the location pointed to by HL is tested. The

Z flag returns its state.

BIT 7,(IX+d) Bit 7 of the contents of the location pointed to by IX plus

displacement d is tested. The Z flag returns its state.

BIT 7,(IY+d) Bit 7 of the contents of the location pointed to by IY plus

displacement d is tested. The Z flag returns its state.

BIT 7,A Bit 7 of A is tested. The Z flag returns its state.

BIT 7,B Bit 7 of B is tested. The Z flag returns its state.

BIT 7,C Bit 7 of C is tested. The Z flag returns its state.

BIT 7,D Bit 7 of D is tested. The Z flag returns its state.

BIT 73 Bit 7 of E is tested. The Z flag returns its state.

BIT 7,H Bit 7 of H is tested. The Z flag returns its state.

BIT 7JL Bit 7 of L is tested. The Z flag returns its state.

CALL C,nn If C (Carry) is set then push the current contents of the program

counter onto the stack and call the routine at location nn. When the

routine returns using a RET it comes straight back by popping the

correct return address off the stack.

CALL M,nn If M (Minus) is set then push the current contents of the program

counter onto the stack and call the routine at location nn. When the

routine returns using a RET it comes straight back by popping the

correct return address off the stack.

CALL NC,nn If C is not set (No Carry) then push the current contents of the

program counter onto the stack and call the routine at location nn.

When the routine returns using a RET it comes straight back by

popping the correct return address off the stack.

CALL NZ,nn If Z is not set (Not Zero) then push the current contents of the

program counter onto the stack and call the routine at location nn.

When the routine returns using a RET it comes straight back by

popping the correct return address off the stack.

CALL P,nn If P (Plus) is set then push the current contents of the program

counter onto the stack and call the routine at location nn. When the

routine returns using a RET it comes straight back by popping the

conrect return address off the stack.

CALL PE,nn If PE (Even) is set then push the current contents of the program

counter onto the stack and call the routine at location nn. When the

routine returns using a RET it comes straight back by popping the

correct return address off the stack.

CALL PO,nn If PO (Odd) is set then push the current contents of the program

counter onto the stack and call the routine at location nn. When the

routine returns using a RET it comes straight back by popping the

correct return address off the stack.

194 The Amstrad Notepad

CALL Z,nn If Z (Zero) is set then push the current contents of the program

counter onto the stack and call the routine at location nn. When the

routine returns using a RET it comes straight back by popping the

correct return address off the stack.

CALL nn Immediately push the current contents of the program counter onto

the stack and call the routine at location nn. When the routine

returns using a RET it comes straight back by popping the correct

return address off the stack.

CCF Complement the C (Carry). If it is 1 it becomes 0, or vice versa.

CP (HL) The contents of the location pointed to by HL are subtracted from

A and the result is discarded. The flags are then set according to the

result.

CP (IX+d) The contents of the location pointed to IX plus displacement d are

subtracted from A and the result is discarded. The flags are then set

according to the result.

CP (IY+d) The contents of the location pointed to by IY plus displacement d

are subtracted from A and the result is discarded. The flags are then

set according to the result.

CP A The contents of A are subtracted from A and the result is discarded.

The flags are then set according to the result.

CP B The contents of B are subtracted from A and the result is discarded.

The flags are then set according to the result.

CP C The contents of C are subtracted from A and the result is discarded.

The flags are then set according to the result.

CP D The contents of D are subtracted from A and the result is discarded.

The flags are then set according to the result.

CP E The contents of E are subtracted from A and the result is discarded.

The flags are then set according to the result.

CP H The contents of H are subtracted from A and the result is discarded.

The flags are then set according to the result.

CP L The contents of L are subtracted from A and the result is discarded.

The flags are then set according to the result.

CP n The value n are subtracted from A and the result is discarded. The

flags are then set according to the result.

CPD The contents of the location pointed to by HL are subtracted from

A and the result is discarded. Then both HL and BC are

decremented. The flags are then set according to the result.

CPDR The contents of the location pointed to by HL are subtracted from

A and the result is discarded. Then both HL and BC are

decremented. This instruction then repeats until BC equals 0 or A is

the same as the contents of the location pointed to by HL.

Advanced User Guide 195

CPI The contents of the location pointed to by HL are subtracted from

A and the result is discarded. Then HL is incremented and BC is

decremented. The flags are then set according to the result.

CPIR The contents of the location pointed to by HL are subtracted from

A and the result is discarded. This instruction then repeats until BC

equals 0 or A is the same as the contents of the location pointed to

by HL.

CPL The contents of A are complemented. All 0 bits become 1 s and vice

versa.

DAA Conditionally adds 6 to the right and/or left nibble of a, based on

the status register for BCD conversion after maths operations.

DEC (HL) Decrement the contents of the location pointed to by HL.

DEC (IX+d) Decrement the contents of the location pointed to by IX plus

displacement d.

DEC (IY+d) Decrement the contents of the location pointed to by IY plus

displacement d.

DEC A Decrement A.

DEC B Decrement B.

DEC BC Decrement BC.

DEC C Decrement C.

DEC D Decrement D.

DEC DE Decrement DE.

DEC E Decrement E.

DEC H Decrement H.

DEC HL Decrement HL.

DEC IX Decrement IX.

DEC IY Decrement IY.

DEC L Decrement L.

DEC SP Decrement SP.

DI Disable all maskable interrupts.

DJNZ e B is decremented. If the result is not zero then execution jumps to

location e. The new location must be within 126 bytes before and

129 bytes following the current location as this is a relative branch.

EI Enable all maskable interrupts.

EX (SP),HL Exchange the contents of the address pointed to by SP with HL.

EX (SP),IX Exchange the contents of the address pointed to by SP with IX.

196 The Amstrad Notepad

EX (SP),IY Exchange the contents of the address pointed to by SP with IY.

EX AF.AF' Exchange AF with its alternate AF' register pair.

EX DE,HL Swap the contents of DE and HL.

EXX Exchange, BC, DE and HL with the alternate BC\ DE' and HL'

register pairs.

HALT Suspend operation and execute NOPs until and interrupt or reset is

received.

IM 0 Set interrupt mode 0 in which the interrupting device may insert

one instruction onto the bus for execution, the first byte of which

must occur during the interrupt acknowledge cycle,

IM 1 Set interrupt mode 1. A RST &38 instruction will be executed

when an interrupt occurs.

IM 2 Set interrupt mode. When an interrupt occurs one byte of data must

be provided by the peripheral, which is used as a low-order address.

The high order address is taken from the I register. This points to a

second address in memory which is loaded into the program

counter and executed.

IN A,(n) Load A with a byte from port (n). A supplies bits 8 to 15 of the

port address, while n provides 0 to 7.

IN A,(C) Load A with a byte from port (C). B must contain bits 8 to 15 of

the port address, while C contains 0 to 7.

IN B,(C) Load B with a byte from port (C). B must contain bits 8 to 15 of

the port address, while C contains 0 to 7.

IN C,(C) Load C with a byte from port (C). B must contain bits 8 to 15 of

the port address, while C contains 0 to 7.

IN D,(C) Load D with a byte from port (C). B must contain bits 8 to 15 of

the port address, while C contains 0 to 7.

IN E,(C) Load E with a byte from port (C). B must contain bits 8 to 15 of

the port address, while C contains 0 to 7.

IN H,(C) Load H with a byte from port (C). B must contain bits 8 to 15 of

the port address, while C contains 0 to 7.

IN L,(C) Load L with a byte from port (C). B must contain bits 8 to 15 of

the port address, while C contains 0 to 7.

INC (HL) Increment the contents of the location pointed to by HL.

INC (IX+d) Increment the contents of the location pointed to by IX plus

displacement d.

INC (IY+d) Increment the contents of the location pointed to by IY plus

displacement d.

INC A Increment A.

Advanced User Guide 197

B Increment B.

BC Increment BC.

C Increment C.

D Increment D.

DE Increment DE.

E Increment E.

H Increment H.

HL Increment HL.

IX Increment IX.

IY Increment IY.

L Increment L.

SP Increment SP.

IND The device addressed by C is read into the memory location

pointed to by HL. Then both B and HL are decremented.

INDR The device addressed by C is read into the memory location

pointed to by HL. Then both B and HL are decremented. This

repeats until B equals 0.

INI The device addressed by C is read into the memory location

pointed to by HL. Then B is decremented and HL is incremented.

INIR The device addressed by C is read into the memory location

pointed to by HL. Then B is decremented and HL is incremented.

This repeats until B equals 0.

JP nn Jump directly to location nn.

JP (HL) Jump directly to the location pointed to by the contents of HL.

JP (IX) Jump directly to the location pointed to by the contents of IX.

JP (IY) Jump directly to the location pointed to by the contents of IY.

JP C,nn If C (Carry) is set, jump to nn.

JP M,nn If M (Minus) is set, jump to nn.

JP NC,nn If C is not set (No Carry), jump to nn.

JP NZ,nn If Z is not set (Not Zero), jump to nn.

JP P,nn If P (Plus) is set, jump to nn.

JP PE,nn If PE (Even) is set, jump to nn.

JP PO,nn If PO (Odd) is set, jump to nn.

JP Z,nn If Z (Zero) is set, jump to nn.

198 The Amstrad Notepad

JR C,e If C (Carry) is set, jump relatively to e.

JR NC,e If C is not set (No Carry), jump relatively to e. The new location

must be within 126 bytes before and 129 bytes after the current

location.

JR NZ,e If Z is not set (Not Zero), jump relatively to e. The new location

must be within 126 bytes before and 129 bytes after the current

location.

JR Z,e If Z (Zero) is set, jump relatively to e. The new location must be

within 126 bytes before and 129 bytes after the current location.

JR e Jump relatively to e. The new location must be within 126 bytes

before and 129 bytes after the current location.

LD (BC),A Load the location pointed to by BC with the value stored in A.

LD (DE),A Load the location pointed to by DE with the value stored in A.

LD (HL),A Load the location pointed to by HL with the value stored in A.

LD (HL),B Load the location pointed to by HL with the value stored in B.

LD (HL),C Load the location pointed to by HL with the value stored in C.

LD (HL),D Load the location pointed to by HL with the value stored in D.

LD (HL)JE Load the location pointed to by HL with the value stored in E.

LD (HL),H Load the location pointed to by HL with the value stored in H.

LD (HL),L Load the location pointed to by HL with the value stored in L.

LD (HL),n Load the location pointed to by HL with the value n.

LD (IX+d),A Load the location pointed to by IX plus displacement d with the

value stored in A.

LD (IX+d),B Load the location pointed to by IX plus displacement d with the

value stored in B.

LD (IX+d),C Load the location pointed to by IX plus displacement d with the

value stored in C.

LD (IX+d),D Load the location pointed to by IX plus displacement d with the

value stored in D.

LD (IX+d),E Load the location pointed to by IX plus displacement d with the

value stored in E.

LD (IX+d),H Load the location pointed to by IX plus displacement d with the

value stored in H.

LD (IX+d),L Load the location pointed to by IX plus displacement d with the

value stored in L.

LD (IX+d),n Load the location pointed to by IX plus displacement d with the

value n.

Advanced User Guide 199

LD (IY+d),A Load the location pointed to by IY plus displacement d with the

value stored in A.

LD (IY+d),B Load the location pointed to by IY plus displacement d with the

value stored in B.

LD (IY+d),C Load the location pointed to by IY plus displacement d with the

value stored in C.

LD (IY+d),D Load the location pointed to by IY plus displacement d with the

value stored in D.

LD (IY+d),E Load the location pointed to by IY plus displacement d with the

value stored in E.

LD (IY+d),H Load the location pointed to by IY plus displacement d with the

value stored in H.

LD (IY+d),L Load the location pointed to by IY plus displacement d with the

value stored in L.

LD (IY+d),n Load the location pointed to by IY plus displacement d with the

value n.

LD (nn),A Load the location pointed to by nn with the value stored in A.

LD (nn),BC Load the two locations pointed to by nn with the two-byte value

stored in BC.

LD (nn),DE Load the two locations pointed to by nn with the two-byte value

stored in DE.

LD (nn),HL Load the two locations pointed to by nn with the two-byte value

stored in HL.

LD (nn),IX Load the two locations pointed to by nn with the two-byte value

stored in IX.

LD (nn),IY Load the two locations pointed to by nn with the two-byte value

stored in IY.

LD (nn),SP Load the two locations pointed to by nn with the two-byte value

stored in SP.

LD A,(BC) Load A with the contents of the location pointed to by BC.

LD A,(DE) Load A with the contents of the location pointed to by DE.

LD A,(HL) Load A with the contents of the location pointed to by HL.

LD A,(IX+d) Load A with the contents of the location pointed to by IX plus

displacement d.

LD A,(IY+d) Load A with the contents of the location pointed to by IY plus

displacement d.

LD A,(nn) Load A with the contents of the location pointed to by nn.

LD A,A Load A with the contents of A. (Can there be a use for this?).

200 The Amstrad Notepad

LD A,B Load A with the contents of B.

LD A,C Load A with the contents of C.

LD A,D Load A with the contents of D.

LD AJE Load A with the contents of E.

LD A,H Load A with the contents of H.

LD A,I Load A with the contents of I (Interrupt register).

LD A,L Load A with the contents of L.

LD A,n Load A with the value n.

LD A,R Load A with the contents of R (Refresh register).

LD B,(HL) Load B with the contents of the location pointed to by HL.

LD B,(IX+d) Load B with the contents of the location pointed to by IX plus

displacement d.

LD B,(IY+d) Load B with the contents of the location pointed to by IY plus

displacement d.

LD B,(nn) Load B with the contents of the location pointed to by nn.

LD B,A Load B with the contents of A.

LD B,B Load B with the contents of B.

LD B,C Load B with the contents of C.

LD B,D Load B with the contents of D.

LD B,E Load B with the contents of E.

LD B,H Load B with the contents of H.

LD B,L Load B with the contents of L.

LD B,n Load B with the value n.

LD C,(HL) Load C with the contents of the location pointed to by HL.

LD C,(IX+d) Load C with the contents of the location pointed to by IX plus

displacement d.

LD C,(IY+d) Load C with the contents of the location pointed to by IY plus

displacement d.

LD C,(nn) Load C with the contents of the location pointed to by nn.

LD C,A Load C with the contents of A.

LD C,B Load C with the contents of B.

LD C,C Load C with the contents of C.

LD C,D Load C with the contents of D.

LD C,E Load C with the contents of E.

Advanced User Guide 201

LD C,H Load C with the contents of H.

LD C,L Load C with the contents of L.

LD C,n Load C with the value n.

LD D,(HL) Load D with the contents of the location pointed to by HL.

LD D,(IX+d) Load D with the contents of the location pointed to by IX plus

displacement d.

LD D,(IY+d) Load D with the contents of the location pointed to by IY plus

displacement d.

LD D,(nn) Load D with the contents of the location pointed to by nn.

LD D,A Load D with the contents of A.

LD D,B Load D with the contents of B.

LD D,C Load D with the contents of C.

LD DJD Load D with the contents of D.

LD D,E Load D with the contents of E.

LD D,H Load D with the contents of H.

LD D,L Load D with the contents of L.

LD D,n Load D with the value n.

LD E,(HL) Load E with the contents of the location pointed to by HL.

LD E,(IX+d) Load E with the contents of the location pointed to by IX plus

displacement d.

LD E,(IY+d) Load E with the contents of the location pointed to by IY plus

displacement d.

LD E,(nn) Load E with the contents of the location pointed to by nn.

LD E,A Load E with the contents of A.

LD E,B Load E with the contents of B.

LD E,C Load E with the contents of C.

LD E,D Load E with the contents of D.

LD E,E Load E with the contents of E.

LD E,H Load E with the contents of H.

LD EL Load E with the contents of L.

LD E,n Load E with the value n.

LD H,(HL) Load H with the contents of the location pointed to by HL.

LD H,(IX+d) Load H with the contents of the location pointed to by IX plus

displacement d.

202 The Amstrad Notepad

LD H,(IY+d) Load H with the contents of the location pointed to by IY plus

displacement d.

LD H,(nn) Load H with the contents of the location pointed to by nn.

LD H,A Load H with the contents of A.

LD H,B Load H with the contents of B.

LD H,C Load H with the contents of C.

LD H,D Load H with the contents of D.

LD HJB Load H with the contents of E.

LD H,H Load H with the contents of H.

LD HJL Load H with the contents of L.

LD H,n Load H with the value n.

LD HL,(nn) Load HL with the two-byte pair at location nn.

LD HL,nn Load HL with the two-byte value nn.

LD I,A Load I (Interrupt register) with the contents of A.

LD IX,(nn) Load IX with the two-byte value at location nn.

LD IX,nn Load IX with the two-byte value nn.

LD IY,(nn) Load IY with the two-byte value at location nn.

LD IY,nn Load IY with the two-byte value nn.

LD L,(HL) Load L with the contents of the location pointed to by HL.

LD L,(IX+d) Load L with the contents of the location pointed to by IX plus

displacement d.

LD L,(IY+d) Load L with the contents of the location pointed to by IY plus

displacement d.

LD L,(nn) Load L with the contents of the location pointed to by nn.

LD L,A Load L with the contents of A.

LD L,B Load L with the contents of B.

LD L,C Load L with the contents of C.

LD L,D Load L with the contents of D.

LD L,E Load L with the contents of E.

LD L,H Load L with the contents of H.

LD LJL Load L with the contents of L.

LD L,n Load L with the value n.

LD R,A Load R (Refresh register) with the contents of A.

Advanced User Guide 203

LD SP,(nn) Load SP with the two-byte contents pointed to by nn.

LD SP,HL Load SP with the value in HL.

LD SP.IX Load SP with the value in IX.

LD SP,IY Load SP with the value in IY.

LD SP,nn Load SP with the value nn.

LDD The contents of the location pointed to by HL are loaded into the

address pointed to by DE. Then BC, DE and HL are all

decremented.

LDDR The contents of the location pointed to by HL are loaded into the

address pointed to by DE. Then BC, DE and HL are all

decremented. This continues until BC equals 0.

LDI The contents of the location pointed to by HL are loaded into the

address pointed to by DE. Then DE and HL are incremented, while

BC is decremented.

LDIR The contents of the location pointed to by HL are loaded into the

address pointed to by DE. Then DE and HL are incremented, while

BC is decremented. This continues until BC equals 0.

NEG The contents of A are subtracted from 0, and the result is stored in

A.

NOP Do nothing for one clock cycle.

OR A A is logically ORed with A, and the result is stored in A.

OR B A is logically ORed with B, and the result is stored in A.

OR C A is logically ORed with C, and the result is stored in A.

OR D A is logically ORed with D, and the result is stored in A.

OR E A is logically ORed with E, and the result is stored in A.

OR H A is logically ORed with H, and the result is stored in A.

OR L A is logically ORed with L, and the result is stored in A.

Or n A is logically ORed with the value n, and the result is stored in A.

OTDR The contents of the location pointed to by HL are output to the

device addressed by the C register. Both B and HL are then

decremented. This continues until B equals 0. C supplies bits 0 to 7

of the port address, and B (after decrementing) supplies bits 8 to 15

OTIR The contents of the location pointed to by HL are output to the

device addressed by the C register. B is then decremented and HL

is incremented. This continues until B equals 0. C supplies bits 0 to

7 of the port address, and B (after decrementing) supplies bits 8 to

15

204 The Amstrad Notepad

OUT (C),A Output the contents of A to port C. C supplies bits 0 to 7 of the

port address, while B supplies bits 8 to 15.

OUT (C),B Output the contents of B to port C. C supplies bits 0 to 7 of the port

address, while B supplies bits 8 to 15.

OUT (C),C Output the contents of C to port C. C supplies bits 0 to 7 of the port

address, while B supplies bits 8 to 15.

OUT (C),D Output the contents of D to port C. C supplies bits 0 to 7 of the

port address, while B supplies bits 8 to 15.

OUT (C),E Output the contents of E to port C. C supplies bits 0 to 7 of the port

address, while B supplies bits 8 to 15.

OUT (C),H Output the contents of H to port C. C supplies bits 0 to 7 of the

port address, while B supplies bits 8 to 15.

OUT (C),L Output the contents of L to port C. C supplies bits 0 to 7 of the port

address, while B supplies bits 8 to 15.

OUT (n),A Output the contents of A to the device addressed by n.

OUTD The contents of the location pointed to by HL are output to the

device addressed by C. Then B and HL are decremented. C

supplies bits 0 to 7 of the ports address and B supplies bits 8 to 15

(after decrementing).

OUTI The contents of the location pointed to by HL are output to the

device addressed by C. Then B is decremented and HL is

incremented. C supplies bits 0 to 7 of the ports address and B

supplies bits 8 to 15 (after decrementing).

POP AF The two-byte contents of the location pointed to by SP (the Stack

Pointer) are loaded into AF and SP is incremented by two.

POP BC The two-byte contents of the location pointed to by SP (the Stack

Pointer) are loaded into BC and SP is incremented by two.

POP DE The two-byte contents of the location pointed to by SP (the Stack

Pointer) are loaded into DE and SP is incremented by two.

POP HL The two-byte contents of the location pointed to by SP (the Stack

Pointer) are loaded into HL and SP is incremented by two.

POP IX The two-byte contents of the location pointed to by SP (the Stack

Pointer) are loaded into IX and SP is incremented by two.

POP IY The two-byte contents of the location pointed to by SP (the Stack

Pointer) are loaded into IY and SP is incremented by two.

PUSH AF SP (the Stack Pointer) is decremented by two and the two-byte

contents of AF are loaded to the location now pointed to by SP.

PUSH BC SP (the Stack Pointer) is decremented by two and the two-byte

contents of BC are loaded to the location now pointed to by SP.

Advanced User Guide 205

PUSH DE SP (the Stack Pointer) is decremented by two and the two-byte

contents of DE are loaded to the location now pointed to by SP.

PUSH HL SP (the Stack Pointer) is decremented by two and the two-byte

contents of HL are loaded to the location now pointed to by SP.

PUSH IX SP (the Stack Pointer) is decremented by two and the two-byte

contents of IX are loaded to the location now pointed to by SP.

PUSH IY SP (the Stack Pointer) is decremented by two and the two-byte

contents of IY are loaded to the location now pointed to by SP.

Bit 0 of the location pointed to by HL is reset to 0.RES 0,(HL) BitO

RES 0,(IX+d) BitO

toO.

RES 0,(IY+d) BitO

toO.

RES 0,A BitO

RES 0,B BitO

RES 0,C BitO

RES 0,D BitO

RES 0,E BitO

RES 0,H BitO

RES 0,L BitO

RES 1.CHL) Bill

RES l,(IX+d) Bit 1

to 0.

RES l,(IY+d) Bit 1

toO.

RES 1,A Bill

RES 1,B Bit 1

RES 1.C Bit 1

RES 1,D Bitl

RES 1,E Bit 1

RES 1,H Bit 1

RES 1,L Bit 1

RES 2,(HL) Bit 2

RES 2,(IX+d) Bit 2

toO.

Bit 1 of the location pointed to by IX plus displacement d is reset

206 The Amstrad Notepad

RES 2,(IY+d) Bit 2

toO.

RES 2,A Bit 2

RES 23 Bit 2

RES 2,C Bit 2

RES 2,D Bit 2

RES 2,E Bit 2

RES 2,H Bit 2

RES 2,L Bit 2

RES 3,(HL) Bit 3

RES 3,ax+d) Bit 3

toO.

RES 3,(IY+d) Bit 3

toO.

RES 3,A Bit 3

RES 33 Bit 3

RES 3,C Bit 3

RES 3,D Bit 3

RES 3JE Bit 3

RES 3,H Bit 3

RES 3,L Bit 3

RES 4.CHL) Bit 4

RES 4,ax+d) Bit 4

to 0.

RES 4,aY+d> Bit 4

toO.

RES 4,A Bit 4

RES 4,B Bit 4

RES 4.C Bit 4

RES 4,D Bit 4

RES 4,E Bit 4

RES 4,H Bit 4

RES 4,L Bit 4

RES 5,(HL) Bit 5

Advanced User Guide 207

RES 5,(IX+d) Bit 5 of the location pointed to by IX plus displacement d is reset

toO.

RES 5,(IY+d) Bit 5 of the location pointed to by IY plus displacement d is reset

toO.

RES 5,A Bit 5 of A is reset to 0.

RES 5,B Bit 5 of B is reset to 0.

RES 5,C Bit 5 of C is reset to 0.

RES 5,D Bit 5 of D is reset to 0.

RES 5,E Bit 5 of E is reset to 0.

RES 5,H Bit 5 of F is reset to 0.

RES 5,L Bit 5 of G is reset to 0.

RES 6,(HL) Bit 6 of the location pointed to by HL is reset to 0.

RES 6,(IX+d) Bit 6 of the location pointed to by IX plus displacement d is reset

toO.

RES 6,aY+d) Bit 6 of the location pointed to by IY plus displacement d is reset

toO.

RES 6,A Bit 6 of A is reset to 0.

RES 6,B Bit 6 of B is reset to 0.

RES 6,C Bit 6 of C is reset to 0.

RES 6,D Bit 6 of D is reset to 0.

RES 6,E Bit 6 of E is reset to 0.

RES 6,H Bit 6 of F is reset to 0.

RES 6,L Bit 6 of G is reset to 0.

RES 7,(HL) Bit 7 of the location pointed to by HL is reset to 0.

RES 7,(IX+d) Bit 7 of the location pointed to by IX plus displacement d is reset

to 0.

RES 7,(IY+d) Bit 7 of the location pointed to by IY plus displacement d is reset

toO.

RES 7,A Bit 7 of A is reset to 0.

RES 7,B Bit 7 of B is reset to 0.

RES 7,C Bit 7 of C is reset to 0.

RES 7,D Bit 7 of D is reset to 0.

RES 7,E Bit 7 of E is reset to 0.

RES 7,H Bit 7 of F is reset to 0.

208 The Amstrad Notepad

RES 7,L Bit 7 of G is reset to 0.

RET PC (the Program Counter) is popped off the stack and execution

continues from the new address.

RET C If C (Carry) is set PC (the Program Counter) is popped off the

stack and execution continues from the new address.

RET M If M (Minus) is set PC (the Program Counter) is popped off the

stack and execution continues from the new address.

RET NC If C is not set (No Carry) PC (the Program Counter) is popped off

the stack and execution continues from the new address.

RET NZ If Z is not set (Not Zero) PC (the Program Counter) is popped off

the stack and execution continues from the new address.

RET P If P (Plus) is set PC (the Program Counter) is popped off the stack

and execution continues from the new address.

RET PE If PE (Even) is set PC (the Program Counter) is popped off the

stack and execution continues from the new address.

RET PO If PO (Odd) is set PC (the Program Counter) is popped off the

stack and execution continues from the new address.

RET Z If Z (Zero) is set PC (the Program Counter) is popped off the stack

and execution continues from the new address.

RETI This is the same as RET but must be used when returning from an

interrupt to properly handle nested interrupts. You must execute and

EI before issuing a RET.

RETN This is the same as RET but must be used when returning from a

non-maskable interrupt to restore the state of the interrupt flag

before the non-maskable interrupt.

RL (HL) The contents of the location pointed to by HL are shifted to the left

by one bit. The contents of the Carry flag is placed in bit 0 and the

contents of bit 7 is moved to the Carry flag.

RL (IX+d) The contents of the location pointed to by IX plus displacement d

are shifted to the left by one bit. The contents of the Carry flag are

placed in bit 0 and the contents of bit 7 are moved to the Carry

flag.

RL (IY+d) The contents of the location pointed to by IY plus displacement d is

shifted to the left by one bit. The contents of the Carry flag is

placed in bit 0 and the contents of bit 7 is moved to the Carry flag.

RL A The contents of A is shifted to the left by one bit. The contents of

the Carry flag is placed in bit 0 and the contents of bit 7 is moved

to the Carry flag.

RL B The contents of B is shifted to the left by one bit. The contents of

the Carry flag is placed in bit 0 and the contents of bit 7 is moved

to the Carry flag.

Advanced User Guide 209

RL C The contents of C is shifted to the left by one bit. The contents of

the Carry flag is placed in bit 0 and the contents of bit 7 is moved

to the Carry flag.

RL D The contents of D is shifted to the left by one bit. The contents of

the Carry flag is placed in bit 0 and the contents of bit 7 is moved

to the Carry flag.

RL E The contents of E is shifted to the left by one bit. The contents of

the Carry flag is placed in bit 0 and the contents of bit 7 is moved

to the Carry flag.

RL H The contents of H is shifted to the left by one bit. The contents of

the Carry flag is placed in bit 0 and the contents of bit 7 is moved

to the Carry flag.

RL L The contents of L is shifted to the left by one bit. The contents of

the Carry flag is placed in bit 0 and the contents of bit 7 is moved

to the Carry flag.

RLA The contents of A is shifted to the left by one bit. The contents of

the Carry flag is placed in bit 0 and the contents of bit 7 is moved

to the Carry flag.

RLC (HL) The contents of the location pointed to by HL is rotated left by one

bit. The original contents of bit 7 is placed in the Carry flag and

also bit 0.

RLC (IX+d) The contents of the location pointed to by IX plus displacement d is

rotated left by one bit. The original contents of bit 7 is placed in the

Carry flag and also bit 0.

RLC (IY+d) The contents of the location pointed to by IY plus displacement d is

rotated left by one bit. The original contents of bit 7 is placed in the

Carry flag and also bit 0.

RLC A The contents of A is rotated left by one bit. The original contents of

bit 7 is placed in the Carry flag and also bit 0.

RLC B The contents of B is rotated left by one bit. The original contents of

bit 7 is placed in the Carry flag and also bit 0.

RLC C The contents of C is rotated left by one bit. The original contents of

bit 7 is placed in the Carry flag and also bit 0.

RLC D The contents of D is rotated left by one bit. The original contents of

bit 7 is placed in the Carry flag and also bit 0.

RLC E The contents of E is rotated left by one bit. The original contents of

bit 7 is placed in the Carry flag and also bit 0.

RLC H The contents of H is rotated left by one bit. The original contents of

bit 7 is placed in the Carry flag and also bit 0.

RLC L The contents of L is rotated left by one bit. The original contents of

bit 7 is placed in the Carry flag and also bit 0.

210 The Amstrad Notepad

RLCA The contents of A is rotated left by one bit. The original contents of

bit 7 is placed in the Carry flag and also bit 0.

RLD The four low bits of the location pointed to by HL are moved to the

four high bits of the same location. The high bits are moved to the

four low bits of A, after the four low bits of A have been moved to

the four low bits of the original location.

RR (HL) The contents of the location pointed to by HL are shifted to the

right by one bit. The contents of the Carry flag is moved to bit 7

and the contents of bit 0 is moved to the Carry flag.

RR (IX+d) The contents of the location pointed to by IX plus displacement d

are shifted to the right by one bit. The contents of the Carry flag is

moved to bit 7 and the contents of bit 0 is moved to the Carry flag.

RR (IY+d) The contents of the location pointed to by IY plus displacement d

are shifted to the right by one bit. The contents of the Carry flag are

moved to bit 7 and the contents of bit 0 are moved to the Carry

flag.

RR A The contents of A are shifted to the right by one bit. The contents

of the Carry flag are moved to bit 7 and the contents of bit 0 are

moved to the Carry flag.

RR B The contents of B are shifted to the right by one bit. The contents

of the Carry flag are moved to bit 7 and the contents of bit 0 are

moved to the Carry flag.

RR C The contents of C are shifted to the right by one bit. The contents

of the Carry flag are moved to bit 7 and the contents of bit 0 are

moved to the Carry flag.

RR D The contents of D are shifted to the right by one bit. The contents

of the Carry flag are moved to bit 7 and the contents of bit 0 are

moved to the Carry flag.

RR E The contents of E are shifted to the right by one bit. The contents

of the Carry flag are moved to bit 7 and the contents of bit 0 are

moved to the Carry flag.

RR H The contents of H are shifted to the right by one bit. The contents

of the Carry flag are moved to bit 7 and the contents of bit 0 are

moved to the Carry flag.

RR L The contents of L are shifted to the right by one bit. The contents

of the Carry flag are moved to bit 7 and the contents of bit 0 are

moved to the Carry flag.

RRA The contents of A are shifted to the right by one bit. The contents

of the Carry flag are moved to bit 7 and the contents of bit 0 are

moved to the Carry flag.

Advanced User Guide 211

RRC (HL) The contents of the location pointed to by HL are rotated to the

right by one bit. The contents of bit 0 are moved to the Carry flag

and also to bit 7.

RRC (IX+d) The contents of the location pointed to by IX plus displacement d

are rotated to the right by one bit. The contents of bit 0 are moved

to the Carry flag and also to bit 7.

RRC (IY+d) The contents of the location pointed to by IX plus displacement d

are rotated to the right by one bit. The contents of bit 0 are moved

to the Carry flag and also to bit 7.

RRC A The contents of A are rotated to the right by one bit. The contents

of bit 0 are moved to the Carry flag and also to bit 7.

RRC B The contents of B are rotated to the right by one bit. The contents

of bit 0 are moved to the Carry flag and also to bit 7.

RRC C The contents of C are rotated to the right by one bit. The contents

of bit 0 are moved to the Carry flag and also to bit 7.

RRC D The contents of D are rotated to the right by one bit. The contents

of bit 0 are moved to the Carry flag and also to bit 7.

RRC E The contents of E are rotated to the right by one bit. The contents

of bit 0 are moved to the Carry flag and also to bit 7.

RRC H The contents of H are rotated to the right by one bit. The contents

of bit 0 are moved to the Carry flag and also to bit 7.

RRC L The contents of L are rotated to the right by one bit. The contents

of bit 0 are moved to the Carry flag and also to bit 7.

RRCA The contents of A are rotated to the right by one bit. The contents

of bit 0 are moved to the Carry flag and also to bit 7.

RRD The four high order bits of the location pointed to by HL are

moved to the four low bits of the same location. The four low order

bits are moved to the four low order bits of A, after the four low

order bits of A are moved to the four high order bits of the original

location.

RST &00 The contents of PC are pushed onto the stack and a jump is made

directly to address &0000.

RST &08 The contents of PC are pushed onto the stack and a jump is made

directly to address &0008.

RST &10 The contents of PC are pushed onto the stack and a jump is made

directly to address &0010.

RST &18 The contents of PC are pushed onto the stack and a jump is made

direcdy to address &0018.

RST &20 The contents of PC are pushed onto the stack and a jump is made

directly to address &0020.

212 The Amstrad Notepad

RST &28 The contents of PC are pushed onto the stack and a jump is made

direcdy to address &0028.

RST &30 The contents of PC are pushed onto the stack and a jump is made

directly to address &0030.

RST &38 The contents of PC are pushed onto the stack and a jump is made

direcdy to address &0038.

SBC A,n The value n is summed with the Carry flag and then subtracted

from the contents of A, and the result is placed in A.

SBC A,(HL) The contents of the address pointed to by HL are summed with the

Carry flag and then subtracted from the contents of A, and the

result is placed in A.

SBC A,(IX+d) The contents of the address pointed to by IX plus displacement d is

summed with the Carry flag and then subtracted from the contents

of A, and the result is placed in A.

SBC A,(IY+d) The contents of the address pointed to by IY plus displacement d

are summed with the Carry flag and then subtracted from the

contents of A, and the result is placed in A.

SBC A,A The contents of A are summed with the Carry flag and then

subtracted from the contents of A, and the result is placed in A.

SBC A,B The contents of B are summed with the Carry flag and then

subtracted from the contents of A, and the result is placed in A.

SBC A,C The contents of C are summed with the Carry flag and then

subtracted from the contents of A, and the result is placed in A.

SBC A,D The contents of D are summed with the Carry flag and then

subtracted from the contents of A, and the result is placed in A.

SBC AJE The contents of E are summed with the Carry flag and then

subtracted from the contents of A, and the result is placed in A.

SBC A,H The contents of H are summed with the Carry flag and then

subtracted from the contents of A, and the result is placed in A.

SBC A,L The contents of L are summed with the Carry flag and then

subtracted from the contents of A, and the result is placed in A.

SBC HL.BC The contents of BC plus the Carry flag are subtracted from the

contents of HL, and the result is placed in HL.

SBC HL,DE The contents of DE plus the Carry flag are subtracted from the

contents of HL, and the result is placed in HL.

SBC HL,HL The contents of HL plus the Carry flag are subtracted from the

contents of HL, and the result is placed in HL.

SBC HL,SP The contents of SP plus the Carry flag are subtracted from the

contents of HL, and the result is placed in HL.

Advanced User Guide 213

SCF TheC

SET 0,(HLj BitO

SET 0,(IX+d) BitO

1.

SET 0,(IY+d) BitO

1.

SET 0,A BitO

SET 0,B BitO

SET 0,C BitO

SET 0,D BitO

SET 03 BitO

SET 0,H BitO

SET 03 BitO

SET 1,(HL) Bit 1

SET l,(IX+d) Bit 1

1.

SET l,(IY+d) Bit 1

1.

SET 1,A Bitl

SET 1,B Bit 1

SET 1,C Bit 1

SET 1,D Bit 1

SET 13 Bit 1

SET 1,H Bit 1

SET 13 Bit 1

SET 2,(HL) Bit 2

SET 2,(IX+d) Bit 2

1.

SET 2,(IY+d) Bit 2

1.

SET 2,A Bit 2

SET 23 Bit 2

SET 2,C Bit 2

SET 2,D Bit 2

Bit 0 of the location pointed to by IY plus displacement d is set to

214 The Amstrad Notepad

SET 2JB Bit 2

SET 2,H Bit 2

SET2JL Bit 2

SET 3,(HL) Bit 3

SET 3,(IX+d) Bit 3

1.

SET 3,(IY+d) Bit 3

1.

SET 3,A Bit 3

SET 3,B Bit 3

SET 3,C Bit 3

SET 3,D Bit 3

SET 3,E Bit 3

SET 3,H Bit 3

SET3.L Bit 3

SET 4,(HL) Bit 4

SET 4,(TX+d) Bit 4

1.

SET 4,(IY+d) Bit 4

1.

SET 4,A Bit 4

SET 4,B Bit 4

SET 4,C Bit 4

SET 4,D Bit 4

SET 4^ Bit 4

SET 4,H Bit 4

SET4,L Bit 4

SET 5,(HL) Bit 5

SET 5,aX+d) Bit 5

1.

SET 5,(IY+d) Bit 5

1.

SET 5,A Bit 5

SET 5,B Bit 5

Advanced User Guide 215

SET5,C Bit 5 of C is set to 1.

SET 5,D Bit 5 of D is set to 1.

SET 5,E Bit 5 of E is set to 1.

SET 5,H Bit 5 of F is set to 1.

SET 5,L Bit 5 of G is set to 1.

SET 6,(HL) Bit 6 of the location pointed to by HL is set to 1.

SET 6,(IX+d) Bit 6 of the location pointed to by IX plus displacement d is set to

1.

SET 6,(IY+d) Bit 6 of the location pointed to by IY plus displacement d is set to

1.

SET 6,A Bit 6 of A is set to 1 .

SET 6,B Bit 6 of B is set to 1 .

SET 6,C Bit 6 of C is set to 1 .

SET 6,D Bit 6 of D is set to 1 .

SET 6JE Bit 6 of E is set to 1 .

SET 6,H Bit 6 of F is set to 1 .

SET 6,L Bit 6 of G is set to 1 .

SET 7,(HL) Bit 7 of the location pointed to by HL is set to 1.

SET 7,(IX+d) Bit 7 of the location pointed to by IX plus displacement d is set to

1.

SET 7,(IY+d) Bit 7 of the location pointed to by IY plus displacement d is set to

1.

SET7,A Bit 7 of A is set to 1.

SET 7,B Bit 7 of B is set to 1 .

SET 7,C Bit 7 of C is set to 1 .

SET 7,D Bit 7 of D is set to 1 .

SET 7^ Bit 7 of E is set to 1.

SET 7,H Bit 7 of F is set to 1 .

SET 7,L Bit 7 of G is set to 1 .

SLA (HL) The contents of the address pointed to by HL are arithmetically

shifted right by one bit. The contents of bit 7 are moved to the

Carry flag and bit 0 is loaded with 0.

SLA (IX+d) The contents of the address pointed to by IX plus displacement d

are arithmetically shifted right by one bit. The contents of bit 7 are

moved to the Carry flag and bit 0 is loaded with 0.

216 The Amstrad Notepad

SLA (IY+d) The contents of the address pointed to by IY plus displacement d

are arithmetically shifted left by one bit. The contents of bit 7 are

moved to the Carry flag and bit 0 is loaded with 0.

SLA A The contents of A are arithmetically shifted left by one bit. The

contents of bit 7 are moved to the Carry flag and bit 0 is loaded

with 0.

SLA B The contents of B are arithmetically shifted left by one bit. The

contents of bit 7 are moved to the Carry flag and bit 0 is loaded

with 0.

SLA C The contents of C are arithmetically shifted left by one bit. The

contents of bit 7 are moved to the Carry flag and bit 0 is loaded

with 0.

SLA D The contents of D are arithmetically shifted left by one bit. The

contents of bit 7 are moved to the Carry flag and bit 0 is loaded

with 0.

SLA E The contents of E are arithmetically shifted left by one bit. The

contents of bit 7 are moved to the Carry flag and bit 0 is loaded

with 0.

SLA H The contents of H are arithmetically shifted left by one bit. The

contents of bit 7 are moved to the Carry flag and bit 0 is loaded

with 0.

SLA L The contents of L are arithmetically shifted left by one bit. The

contents of bit 7 are moved to the Carry flag and bit 0 is loaded

with 0.

The contents of the address pointed to by HL are arithmetically

shifted right by one bit. The contents of bit 0 are moved to the

Carry flag and bit 7 remains unchanged.

The contents of the address pointed to by IX plus displacement d

are arithmetically shifted right by one bit. The contents of bit 0 are

moved to the Carry flag and bit 7 remains unchanged.

SRA (IY+d) The contents of the address pointed to by IY plus displacement d

are arithmetically shifted right by one bit. The contents of bit 0 are

moved to the Carry flag and bit 7 remains unchanged.

SRA A The contents of A are arithmetically shifted right by one bit. The

contents of bit 0 are moved to the Carry flag and bit 7 remains

unchanged.

SRA B The contents of B are arithmetically shifted right by one bit. The

contents of bit 0 are moved to the Carry flag and bit 7 remains

unchanged.

SRA C The contents of C are arithmetically shifted right by one bit. The

contents of bit 0 are moved to the Carry flag and bit 7 remains

unchanged.

SRA (HL)

SRA (IX+d)

Advanced User Guide 217

SRA D The contents of D are arithmetically shifted right by one bit. The

contents of bit 0 are moved to the Carry flag and bit 7 remains

unchanged.

SRA E The contents of E are arithmetically shifted right by one bit. The

contents of bit 0 are moved to the Carry flag and bit 7 remains

unchanged.

SRA H The contents of H are arithmetically shifted right by one bit. The

contents of bit 0 are moved to the Carry flag and bit 7 remains

unchanged.

SRA L The contents of L are arithmetically shifted right by one bit. The

contents of bit 0 are moved to the Carry flag and bit 7 remains

unchanged.

SRL (HL) The contents of the location pointed to by HL are logically shifted

right by one bit. Bit 7 is set to 0 and the contents of bit 0 are

moved to the Carry flag.

SRL (IX+d) The contents of the location pointed to by IX plus displacement d

are logically shifted right by one bit. Bit 7 is set to 0 and the

contents of bit 0 are moved to the Carry flag.

SRL (IY+d) The contents of the location pointed to by IY plus displacement d

are logically shifted right by one bit. Bit 7 is set to 0 and the

contents of bit 0 are moved to the Carry flag.

SRL A The contents of A are logically shifted right by one bit. Bit 7 is set

to 0 and the contents of bit 0 are moved to the Carry flag.

SRL B The contents of B are logically shifted right by one bit. Bit 7 is set

to 0 and the contents of bit 0 are moved to the Carry flag.

SRL C The contents of C are logically shifted right by one bit. Bit 7 is set

to 0 and the contents of bit 0 are moved to the Carry flag.

SRL D The contents of D are logically shifted right by one bit. Bit 7 is set

to 0 and the contents of bit 0 are moved to the Carry flag.

SRL E The contents of E are logically shifted right by one bit. Bit 7 is set

to 0 and the contents of bit 0 are moved to the Carry flag.

SRL H The contents of H are logically shifted right by one bit. Bit 7 is set

to 0 and the contents of bit 0 are moved to the Carry flag.

SRL L The contents of L are logically shifted right by one bit. Bit 7 is set

to 0 and the contents of bit 0 are moved to the Carry flag.

SUB (HL) The contents of the location pointed to by HL are subtracted from

A, and the result is stored in A.

SUB (IX+d) The contents of the location pointed to by IX plus displacement d

are subtracted from A, and the result is stored in A.

SUB (IY+d) The contents of the location pointed to by IY plus displacement d

are subtracted from A, and the result is stored in A.

218 The Amstrad Notepad

SUB A The contents of A are subtracted from A, and the result is stored in

A.

SUB B The contents of B are subtracted from A, and the result is stored in

A.

SUB C The contents of C are subtracted from A, and the result is stored in

A.

SUB D The contents of D are subtracted from A, and the result is stored in

A.

SUB E The contents of E are subtracted from A, and the result is stored in

A.

SUB H The contents of H are subtracted from A, and the result is stored in

A.

SUB L The contents of L are subtracted from A, and the result is stored in

A.

SUB n The value n is subtracted from A, and the result is stored in A.

XOR (HL) The contents of the location pointed to by HL are exclusive-ORed

with A, and the result is stored in A.

XOR (IX+d) The contents of the location pointed to by IX plus displacement d

are exclusive-ORed with A, and the result is stored in A.

XOR (IY+d) The contents of the location pointed to by IY plus displacement d

are exclusive-ORed with A, and the result is stored in A.

XOR A The contents of A are exclusive-ORed with A, and the result is

stored in A.

XOR B The contents of B are exclusive-ORed with A, and the result is

stored in A.

XOR C The contents of C are exclusive-ORed with A, and the result is

stored in A.

XOR D The contents of D are exclusive-ORed with A, and the result is

stored in A.

XOR E The contents of E are exclusive-ORed with A, and the result is

stored in A.

XOR H The contents of H are exclusive-ORed with A, and the result is

stored in A.

XOR L The contents of L are exclusive-ORed with A, and the result is

stored in A.

XOR n The value n is exclusive-ORed with A, and the result is stored in A.

THE UNDOCUMENTED Z80

INSTRUCTIONS

Not many people know that the Z80 microprocessor incorporates a number of

undocumented instructions - particularly to do with handling the IX and IY register

pairs as four single-byte registers, as you can with AF, BC, DE and HL.

However, because Zilog did not document them you are unlikely to find an assembler

that recognises these new mnemonics. Certainly BBC Basic doesn't, so if you want to

use them you will have to enter in the raw machine code hex codes (which are shown

next to each instruction in the following table).

Thankfully this is quite easy. All you have to do is look up the two-byte pair and

enter code in the following manner (as long as you are in an assembler section of

your program):

DEFB &DD:DEFB SBC

In this case the new instruction CP hX will be assembled.

Please remember that because these instructions are undocumented they are not

guaranteed to work and the author and publisher of this book will accept no

responsibility for your use of them. That said, let's hope you find them useful.

ADC A,hX DD 8C The contents of A, the Carry flag and the high byte of the

IX register are added to A, and the result is stored in A.

ADC A.1X DD 8D The contents of A, the Carry flag and the low byte of the

IX register are added to A, and the result is stored in A.

ADC A,hY FD 8C The contents of A, the Carry flag and the high byte of the

IY register are added to A, and the result is stored in A.

ADC A,1Y FD 8D The contents of A, the Carry flag and the low byte of the

IY register are added to A, and the result is stored in A.

220 The Amstrad Notepad

ADD A,hX DD 84

ADD A,1X DD 85

ADD A,hY FD 84

ADD A,1Y FD 85

AND hX DD A4

AND IX DD A5

AND hY FD A4

AND 1Y FD A5

CP hX DD BC

CP IX

CP hY

CP1Y

INC hX

INC IX

INC hY

INC1Y

LD hX,A

LD hX,B

LD hX,C

LD hX,D

DD BD

FD BC

FD BD

DD 25

DD 2D

FD25

FD 2D

DD 67

DD 60

DD 61

DD 62

The contents of A and the high byte of the IX register are

added to A, and the result is stored in A.

The contents of A and the low byte of the IX register are

added to A, and the result is stored in A.

The contents of A and the high byte of the IY register are

added to A, and the result is stored in A.

The contents of A and the low byte of the IY register are

added to A, and the result is stored in A.

The high byte of the IX register is ANDed with A, and

the result is stored in A.

The low byte of the IX register is ANDed with A, and the

result is stored in A.

The high byte of the IY register is ANDed with A, and

the result is stored in A.

The low byte of the IY register is ANDed with A, and the

result is stored in A.

The conten ; of the high byte of IX are subtracted from A

and the result is discarded. The flags are then set

according to the result.

The contents of the low byte of IX are subtracted from A

and the result is discarded. The flags are then set

according to the result.

The contents of the high byte of IY are subtracted from A

and the result is discarded. The flags are then set

according to the result.

The contents of the low byte of IY are subtracted from A

and the result is discarded. The flags are then set

according to the result.

The high byte of IX is incremented.

The low byte of IX is incremented.

The high byte of IY is incremented.

The low byte of IY is incremented.

Load the high byte of IX with the value in A.

Load the high byte of IX with the value in B.

Load the high byte of IX with the value in C.

Load the high byte of IX with the value in D.

Advanced User Guide 221

LD hXJS DD 63 Load the high byte of IX with the value in E.

LD hX,n DD 26 nn Load the high byte of IX with the value n.

LD hY,A FD 67 Load the high byte of IY with the value in A.

LD hY,B FD 60 Load the high byte of IY with the value in B.

LD hY,C FD 61 Load the high byte of IY with the value in C.

LD hY,D FD 62 Load the high byte of IY with the value in D.

LD hY,E FD 63 Load the high byte of IY with the value in E.

LD hY,n FD 26 nn Load the high byte of IY with the value n.

LD 1X,A DD 6F Load the low byte of IX with the value in A.

LD 1X,B DD 68 Load the low byte of IX with the value in B.

LD 1X,C DD 69 Load the low byte of IX with the value in C.

LD 1X,D DD 6A Load the low byte of IX with the value in D.

LD 1X,E DD 6B Load the low byte of IX with the value in E.

LD lX,n DD 2E nn Load the low byte of IX with the value n.

LD 1Y,A FD 6F Load the low byte of IY with the value in A.

LD 1Y,B FD 68 Load the low byte of IY with the value in B.

LD 1Y,C FD 69 Load the low byte of IY with the value in C.

LD 1Y,D FD 6A Load the low byte of IY with the value in D.

LD 1Y,E FD 6B Load the low byte of IY with the value in E.

LD lY,n FD 2E nn Load the low byte of IY with the value n.

LD A,hX DD 7C Load A with the high byte of IX.

LD B,hX DD 44 Load B with the high byte of IX.

LD C,hX DD 4C Load C with the high byte of IX.

LD D,hX DD 54 Load D with the high byte of IX.

LD E,hX DD 5C Load E with the high byte of IX.

LD A,1X DD 7D Load A with the low byte of IX.

LD B,1X DD 45 Load B with the low byte of IX.

LD C,1X DD 4D Load C with the low byte of IX.

LD D,1X DD 55 Load D with the low byte of IX.

LD E,1X DD 5D Load E with the low byte of IX.

222 The Amstrad Notepad

LD A,hY FD 7C Load A with the high byte of IY.

LD B,hY FD 44 Load B with the high byte of IY.

LD C,hY FD 4C Load C with the high byte of IY.

LD D,hY FD 54 Load D with the high byte of IY.

LD E,hY FD 5C Load E with the high byte of IY.

LD A,1Y FD 7D Load A with the low byte of IY.

LD B,1Y FD 45 Load B with the low byte of IY.

LD C,1Y FD 4D Load C with the low byte of IY.

LD D,1Y FD 55 Load D with the low byte of IY.

LD E,1Y FD 5D Load E with the low byte of IY.

LD hX,lX DD 65 Load the high byte of IX with the low byte.

LD lX,hX DD 6C Load the low byte of IX with the high byte.

LD hY,lY FD 65 Load the high byte of IY with the low byte.

LD lY,hY FD 6C Load the low byte of IX with the high byte.

OR hX DD B4 The high byte of IX is logically ORed with A, and the

result is stored in A.

OR IX DD B5 The low byte of IX is logically ORed with A, and the

result is stored in A.

OR hY FD B4 The high byte of IY is logically ORed with A, and the

result is stored in A.

OR IY FD B5 The low byte of IY is logically ORed with A, and the

result is stored in A.

SBC A,hX DD 9C The high byte of IX is summed with the Carry flag and

subtracted from A. The result is then stored in A.

SBC A,1X DD 9D The low byte of IX is summed with the Carry flag and

subtracted from A. The result is then stored in A.

SBC A,hY FD 9C The high byte of IY is summed with the Carry flag and

subtracted from A. The result is then stored in A.

SBC A,1Y FD 9D The low byte of IX is summed with the Carry flag and

subtracted from A. The result is then stored in A.

SLL A CB 37 The contents of A are logically shifted left. Bit 0 is set to

0 and the contents of bit 7 are moved to the Carry flag.

SLL B CB 30 The contents of B are logically shifted left. Bit 0 is set to

0 and the contents of bit 7 are moved to the Carry flag.

Advanced User Guide 223

SLL C CB 3 1 The contents of C are logically shifted left. Bit 0 is set to

0 and the contents of bit 7 are moved to the Carry flag.

SLL D CB 32 The contents of D are logically shifted left. Bit 0 is set to

0 and the contents of bit 7 are moved to the Carry flag.

SLL E CB 33 The contents of E are logically shifted left. Bit 0 is set to

0 and the contents of bit 7 are moved to the Carry flag.

SLL H CB 34 The contents of H are logically shifted left. Bit 0 is set to

0 and the contents of bit 7 are moved to the Carry flag.

SLL L CB 35 The contents of L are logically shifted left. Bit 0 is set to

0 and the contents of bit 7 are moved to the Carry flag.

SLL (HL) CB 36 The contents of the location pointed to by HL are

logically shifted left. Bit 0 is set to 0 and the contents of

bit 7 are moved to the Carry flag.

SUB hX DD 94 The high byte of IX is subtracted from A and the result is

stored in A.

SUB IX DD 95 The low byte of IX is subtracted from A and the result is

stored in A.

SUB hY FD 94 The high byte of IY is subtracted from A and the result is

stored in A.

SUB 1Y FD 95 The low byte of IY is subtracted from A and the result is

stored in A.

XOR hX DD AC The high byte of IX is exclusive-ORed with A and the

result is stored in A.

XOR IX DD AD The low byte of IX is exclusive-ORed with A and the

result is stored in A.

XOR hY FD AC The high byte of IY is exclusive-ORed with A and the

result is stored in A.

XOR IY FD AD The low byte of IY is exclusive-ORed with A and the

result is stored in A.

SECTION 3

APPENDICES

APPENUM H

NC100 JUMPBLOCK

ENTRY POINTS

COL1 &B818

COL1TEXT &B81B

EDITBUF &B800

FCLOSE &B890

FDATESTAMP &B8C9

FERASE &B893

FGETATTR &B8CF

FINBLOCK &B896

FINCHAR &B899

FINDFIRST &B89C

FINDNEXT &B89F

FOPENIN &B8A2

FOPENOUT &B8A5

FOPENUP &B8A8

FOUTBLOCK &B8AB

FOUTCHAR &B8AE

FRENAME &B8B1

FSEEK &B8B4

FSETATTR &B8CC

FSIZE &B8B7

FSIZEHANDLE &B8BA

FTELL &B8BD

FTESTEOF &B8C0

HEAPADDRESS &B87E

Advanced User Guide 227

HEAPALLOC &B881

HEAPFREE &B884

HEAPLOCK &B887

HEAPMAXFREE &B88A

HEAPREALLOC &B88D

KMCHARRETURN &B803

KMGETYELLOW &B8D2

KMREADKBD &B806

KMSETEXPAND &B809

KMSETTICKCOUNT &B80C

KMSETYELLOW &B8D5

KMWAITKBD &B80F

LAPCAT_RECEIVE &B8D8

LAPCAT_SEND &B8DB

MCPRINTCHAR &B851

MCREADYPRINTER &B854

MCSETPRINTER &B857

PADGETTICKER &B872

PADGETTIME &B875

PADGETVERSION &B8DE

PADINITSERIAL &B85A

PADINSERIAL &B85D

PADOUTPARALLEL &B860

PADOUTSERIAL &B863

PADREADYPARALLEL &B866

PADREADYSERIAL &B869

PADRESETSERIAL &B86C

PADSERIALWAITING &B86F

PADSETALARM &B878

PADSETTIME &B87B

READBUF &B812

SELECTFILE &B8C3

SETDTA &B8C6

TESTESCAPE &B815

TEXTOUT &B81E

TEXTOUTCOUNT &B821

228 The Amstrad Notepad

TXTBOLDOFF &B83F

TXTBOLDON &B842

TXTCLEARWINDOW &B824

TXTCUROFF &B827

TXTCURON &B82A

TXTGETCURSOR &B82D

TXTGETWINDOW &B830

TXTINVERSEOFF &B845

TXTINVERSEON &B848

TXTOUTPUT &B833

TXTSETCURSOR &B836

TXTSETWINDOW &B839

TXTUNDERLINEOFF &B84B

TXTUNDERLINEON &B84E

TXTWRCHAR &B83C

INPUT/OUTPUT PORTS

(&0000 - &OOFF)

&0000 Display memory start Write only

&0010-&0013 Memory management Read/Write

&0020 Card wait control Write only

&0030 Baud rate Write only

&0040 Parallel port data Write only

&0050-&0053 Speaker frequency Write only

&0060 IRQ Mask Write only

&0070 Power on/off control Write only

&0080-&008F Not Used -

&0090 IRQ request status Read/Write

&00A0 Card Status Read only

&00B0-&00B9 Key data in Read only

&00C0-&00C1 UART (UPD71051) Read/Write

&O0D0-&0ODF RTC (TC8521) Read/Write

&OOEO-&OOFF Not Used

KEYBOARD SCAN CODES

(As reported by the program INKEY.BAS)

KEY NORMAL SHIFT CONTROL SYMBOL SHFT/CTRL SHFT/SMBL

[Stop] &000 &000 - - -

Tab] &009 &2E4 &2E1 - -

Return] &00D &2EC &2EC - -

Space] &020 &220 &2EB - -

0
- &021 - - -

"]
- &022 - - -

#] - &023 - - -

$]
- &024 - -

%]
- &025 - -

&]
- &026 - -

1 &027 - &33A -

(]
- &028 - -

)]
- &029 - -

1
- &02A - -

+]
- &02B - -

J &02C - &0AE -

-] &02D - - -

•I &02E - &0AF -

/] &02F - &0A8 -

0 &030 - &2E1 -

1 &031 - &211 &0AD

2 &032 - &209 &33C -

3 &033 - &2E6 -

4 &034 - &2E1 - -

5 &035 - &2D9 &33E &2D2

6 &036 - &2E0 &33D &2D7

7 &037 - &342 - -

8 &038 - &355 - -

9

:]

&039

&03A

&2DC - -

;] &03B - - -

<]
- &03C - -

-] &03D - -

>]
- &03E - - -

?]
- &03F - -

<§>]
- &040 &200 - -

Advanced User Guide 231

[A] &041 &061 &201 &084 - &08E

[B] &042 &062 &202 - - -

[C] &043 &063 &203 &087 &309 &080

[D] &044 &064 &204 &314 &38E -

[E] &045 &065 &205 &091 - &092

[F] &046 &066 &206 - -

[G] &047 &067 &207 - -

[H] &048 &068 &2E3 &OAB &3DC

[1] &049 &069 &209 - -

[J] &04A &06A &20A - -

[K] &04B &06B &20B - -

[L] &04C &06C &20C - &308

[M] &04D &06D &20D &0E6 &306

[N] &04E &06E &20E &0A4 - &0A5

[0] &04F &06F &20F &094 - &099

[P] &050 &070 &3DE &014 &210 -

[Q] &051 &071 &211 &OAC - -

[R] &052 &072 &212 - - -

[S] &053 &073 &213 &0E1 &370 &0E1

[T] &054 &074 &29F &315 -

EMI &055 &075 &215 &081 &09A

[V] &056 &076 &216 -

[W] &057 &077 &217 -

[X] &058 &078 &218 -

[Y] &059 &079 &219 -

[Z] &05A &07A &21A -

[[] &05B

&05C

&05D

N

[]]

- &33B

[A]
&05E -

U &05F -

[{]

[|]

&07B

&07C ;

D] &07D

H &07E -

U
- &09C -

[Del->] &221 &2E5 &205

[<-Del] &27F &2D3 &2D4 -

[Up] &2F0 &2F4 &2F8 &018

[Down] &2F1 &2F5 &2F9 &019

[Left] &2F2 &2F6 &2FA &01B

[Right] &2F3 &2F7 &2FB &01A

[Menu] &386 &3E3 &3D4 &393

xi'xiaav

aa'xiaav

oa'xiaav

ds'iHaav

ih'ihaav

3a'iHaav

oa'iHaav

u'vaav

Tvaav

h'vaav

3'vaav

a'vaav

o'vaav

a'vaav

v'vaav

(p+ai)'vaav

(p+xi)'vaav

(~ih)'vaav

ds'~iHoav

ih'ihoav

3a'iHoav

oa'iHoav

u'voav

n'voav

h'voav

3'voav

a'voav

o'voav

a'voav

v'voav

(p+ai)'voav

(p+xi)'voav

(~ih)'voav

SOINOI/\I3NI/\I

6Zaa

eiaa

60aa

68

6Z

61

60

0290

98

PQ

88

ZQ

IS

08

Z8

9098ad

9098aa

98

W.03

V903

V903

V*03

OZ30

08

08

38

V8

68

88

d8

9038Od

9038aa

38

S3aoodo

saaojMOiunuiSMi

08Z3013S3131dtMOD3HI

Advanced User Guide 233

DD 39 ADD IX.SP

FD 09 ADD IY.BC

FD 19 ADD IY.DE

FD 29 ADD IY.IY

FD39 ADD IY.SP

A6 AND (HL)

DD A6 05 AND (IX+d)

FD A6 05 AND (lY+d)

A7 AND A

AO AND B

A1 AND C

A2 AND D

A3 AND E

A4 AND H

A5 AND L

E6 20 AND n

CB 46 BIT 0,(HL)

DD CB 05 46 BIT 0,(IX+d)

FD CB 05 46 BIT 0,(IY+d)

CB 47 BIT 0,A

CB 40 BIT 0,B

CB 41 BIT 0,C

CB 42 BITO.D

CB 43 BIT 0,E

CB 44 BIT 0,H

CB 45 BIT 0,L

CB 4E BIT 1 ,(HL)

DD CB 05 4E BIT 1,(IX+d)

FD CB 05 4E BIT 1 ,(IY+d)

CB 4F BIT 1 ,A

CB 48 BIT 1 ,B

CB 49 BIT 1 ,C

CB 4A BIT 1,D

CB 4B BIT 1,E

CB 4C BIT 1 ,H

CB 4D BIT LI

CB 56 BIT 2,(HL)

DD CB 05 56 BIT 2.(IX+d)

FD CB 05 56 BIT 2,(IY+d)

CB 57 BIT 2,A

CB 50 BIT 2,B

CB 51 BIT 2,C

CB 52 BIT2.D

CB 53 BIT2.E

CB 54 BIT 2,H

CB 55 BIT 2.L

CB5E BIT 3,(HL)

DD CB 05 5E BIT 3,(IX+d)

FD CB 05 5E BIT 3,(IY+d)

CB 5F BIT 3,A

234 The Amstrad Notepad

CB 58 BIT 3,B

CB 59 BIT 3,C

CB 5A BIT 3,D

CB 5B BIT3.E

CB 5C BIT 3,H

CB 5D BIT3.L

CB 66 BIT 4,(HL)

DD CB 05 66 BIT 4,(IX+d)

FD CB 05 66 BIT 4,(IY+d)

CB 67 BIT 4,A

CB 60 BIT 4,B

CB 61 BIT 4,C

CB 62 BIT 4,D

CB 63 BIT 4,E

CB 64 BIT 4,H

CB 65 BIT 4,L

CB 6E BIT 5,(HL)

DD CB 05 6E BIT 5,(IX+d)

FD CB 05 6E BIT 5,(IY+d)

CB 6F BIT 5,A

CB 68 BIT 5,B

CB 69 BIT 5,C

CB 6A BIT 5,D

CB 6B BIT5.E

CB 6C BIT 5,H

CB 6D BIT 5,L

CB 76 BIT 6,(HL)

DD CB 05 76 BIT 6,(IX+d)

FD CB 05 76 BIT 6,(IY+d)

CB 77 BIT 6,A

CB 70 BIT 6,B

CB 71 BIT 6,C

CB 72 BIT6.D

CB 73 BIT6.E

CB 74 BIT 6,H

CB75 BIT 6,L

CB 7E BIT 7,(HL)

DD CB 05 7E BIT 7,(IX+d)

FD CB 05 7E BIT 7,(IY+d)

CB 7F BIT 7,A

CB 78 BIT 7,B

CB 79 BIT 7,C

CB 7A BIT 7,D

CB 7B BIT 7,E

CB 7C BIT 7,H

CB 7D BIT 7,L

DC 84 05 CALL C.nn

FC 84 05 CALL M.nn

D4 84 05 CALL NC.nn

9048tO uu'znnnvo

90V8*d uu.Pnnvo

90fr803 uu,gdnnvo

904843 uu'odnnvo

90PQ00 uu*znnvo

90P8ao uunvC

de dCC

3a)1H)dC

903aaa)P+XI)dO

903aad)PY+l)dC

da AdC

8a ado

6a 0PO

va ado

aa 3dC

oa HdO

aa 1dC

OZ3d udO

6AD3 ado

68D3 aado

iaa3 dldC

VID3 IdC

d2 LdC

LZ vva

9e L)H)03D

909eaa)p+xi)03a

909ead)P+Al)C3D

ae v03a

90 a03a

ao oa03a

ao 003a

91 a03a

Bl 3a03a

Ql 303D

92 H03D

QZ 1H03a

qzaa xi03a

asad aioaa

QZ ioaa

ae dsoaa

8d la

3Z01 azNra

ad 13

£3 iH')ds)xa

S3aa xi')ds)xa

G3ad Al')dS)X3

236 The Amstrad Notepad

08 EX AF.AF'

EB EX DE.HL

D9 EXX

76 HALT

ED 46 IM 0

ED 56 IM 1

ED5E IM2

ED 78 IN A,)C)

ED 40 IN B,)C)

ED 48 IN C,)C)

ED 50 IN D,)C)

ED 58 IN E,)C)

ED 60 IN H,)C)

ED 68 IN L,)C)

34 INC)HL)

DD 34 05 INC)IX+d)

FD 34 05 INC)lY+d)

3C INC A

04 INC B

03 INC BC

OC INC C

14 INC D

13 INC DE

1C INC E

24 INC H

23 INC HL

DD 23 INC IX

FD 23 INC IY

2C INC L

33 INC SP

DB 20 IN A,n

ED AA IND

ED BA INDR

ED A2 INI

ED B2 INIR

C3 84 05 JP nn

E9 JP)HL)

DD E9 JP)IX)

FD E9 JP)IY)

DA 84 05 JP Cu'n

FA 84 05 JP M,nn

D2 84 05 JP NCu'n

C2 84 05 JP NZu'n

F2 84 05 JP Pu'n

EA 84 05 JP PEu'n

E2 84 05 JP POu'n

CA 84 05 JP Zu'n

3288 ur e,O

3208 ar Q'ON

32OZ ur e,ZN

3ZQZ ar e'Z

3ZQI dr e

zo an v')oa)

Zl an v')3a)

77 an A'hH)

O7 an a,hH)

YL an C'hH)

ZL an a,hH)

ZL an 3')"IH)

VI an H')"IH)

97 an l')-IH)

OZ98 an u'hH)

90zzaa an ,A)P+Xl)

90ozaa an a')p+xi)

90uaa an o')p+xi)

90ziaa an a')p+xi)

90ezaa an 3')P+Xl)

90viaa an H')P+Xl)

909zaa an T)P+Xl)

oz9098aa an u')p+Xl)

9077Od an ,A)P+AI)

9007Dd an a')p+ai)

90UDd an 0')P+Al)

90ZLDd an a')pY+i)

9037Dd an 3')P+Al)

90PLOd an H')P+AI)

9097Dd an i')p+ai)

OZ9093FD an u')pY+l)

90t78ZZ an ,A)uu)

90178ZVD3 an oa,)uu)

9017839D3 an 3D')uu)

90VZZZ an LH')uu)

90vzzzaa an Xl,)uu)

901^8ZZOd an Al')uu)

90VQZLD3 an dS')uu)

vo cn)oa)'v

A1 an)3a)'v

37 an L)H)'A

903zaa an)P+Xl)'A

9037ad an)P+Al)'A

901^8ve an)uu)'v

d7 an v'v

87 an a'v

67 an o'v

vz an a'v

az an 3'A

C7 ai H'A

79D3 an IV

az an n'A

L£2

0233 u,van

d9D3 u'van

917)nH),aan

90917aa)p+xi)'aan

909Vad)p+Ai)'aan

LP v'aan

OP

o'aan

a'aan

lP

ZP a'aan

£P 3,aan

tt7 H'aan

917 n'aan

OZ90 u'aan

90178QP03)uu)'ogan

90PQ10 uu'oaan

3t7)nH)'oan

90317aa)p+xi),oan

903Pad)p+ai)'oan

AP v'oan

8P a'oan

617 o'oan

a,oan

BP 3'oan

op H'oan

OZ30

)nH)'aan

u'oan

n'oan

99

9099aa)p+xi)'aan

9099Dd)p+ai),aan

79 v,aan

09 a'aan

19 o'aan

Z9 a,aan

89 3'aan

PQ H'aan

99 n,aan

OZ91 u,aan

90P889D3)uu),3aan

9048U uu'gaan

39)nH)'3an

9039aa)p+xi)'3an

9039ad)p+ai)'3an

39 v'3an

89 a'3an

69 o'3an

A9 a,3an

89 3'3an

09 ,H3an

D9 n'3an

OZ31 u'aan

99)-ih)'han

9099aa)p+xi),han

9099ad)P+Al)'HQl

19 A'HQl

addetofijadrstAmeTh2£2

edtriQrsefidpncVvAd 6S2

aa±o

uao

iao

hao

3ao

aao

oao

aao

vao

)p+ai)ao

)p+xi)ao

)ih)ao

dON

03N

aian

ion

aacn

aan

uu'dsan

Ai'dsan

xi'dsan

iH'dsan

)uu)'dsan

v,aan

u'nan

n'nan

H'nan

3'nan

a'nan

o'nan

a'nan

v'nan

)p+ai)'nan

)p+xi)'nan

)nH)'nan

uu'aian

)uu)'aian

uu'xian

)uu)'xian

Vian

uu'hhan

)uu)'-ihan

u'han

n'Han

,Hhan

3'han

a'Han

o'han

a,Han

asD3

OZ9d

sa

t^a

ea

3a

ta

oa

za

9098Dd

909aaa

99

oo

D3

oaD3

0AD3

88D3

8AD3

90PQl£

6dDd

6daa

6d

9017887D3

d4D3

OZ32

D9

09

89

A9

69

89

d9

9039Dd

9039aa

39

90178VZDd

90t78A2FD

901^8vzaa

90178vsaa

LPD3

90178VZ

90178AS

OZ9Z

99

vs

89

Z9

1-9

09

eaa3

240 The Amstrad Notepad

ED 79 OUT)C),A

ED 41 OUT)C),B

ED 49 OUT)C),C

ED 51 OUT)C),D

ED 59 OUT)C)3'

ED 61 OUT)C),H

ED 69 OUT)C),L

D3 20 OUT)u),A

ED AB OUTD

ED A3 OUTI

F1 POP AF

C1 POP BC

D1 POP DE

E1 POP HL

DD E1 POP Xl

FD E1 POP IY

F5 PUSH AF

C5 PUSH BC

D5 PUSH DE

E5 PUSH HL

DD E5 PUSH IX

FD E5 PUSH IY

CB 86 RES 0,)HL)

DD CB 05 86 RES 0,)IX+d)

FD CB 05 86 RES 0,)IY+d)

CB 87 RES 0,A

CB 80 RES 0,B

CB81 RES 0,C

CB 82 RES 0,D

CB 83 RES0.E

CB 84 RES0.H

CB 85 RES 0,L

CB 8E RES 1,)HL)

DD CB 05 8E RES 1,)IX+d)

FD CB 05 8E RES 1,)IY+d)

CB 8F RES 1,A

CB 88 RES1.B

CB 89 RES 1,C

CB 8A RES 1,D

CB 8B RES 13'

CB 8C RES 1,H

CB8D RES 1,L

CB 96 RES 2,)HL)

DD CB 05 96 RES 2,)IX+d)

FD CB 05 96 RES 2,)IY+d)

CB 97 RES 2,A

CB 90 RES2.B

CB 91 RES 2,C

Advanced User Guide 241

CB 92 RES2.D

CB 93 RES2.E

CB 94 RES 2,H

CB 95 RES 2,L

CB 9E RES 3,)HL)

DD CB 05 9E RES 3,)IX+d)

FD CB 05 9E RES 3,)IY+d)

CB 9F RES 3,A

CB 98 RES 3,B

CB 99 RES 3,C

CB 9A RES3.D

CB 9B RES 33'

CB 9C RES 3,H

CB9D RES 3,L

CB A6 RES 4,)HL)

DD CB 05 A6 RES 4,)IX+d)

FD CB 05 A6 RES 4,)IY+d)

CB A7 RES 4,A

CB A0 RES 4,B

CB A1 RES 4,C

CB A2 RES 4,D

CB A3 RES 4,E

CB A4 RES 4,H

CB A5 RES 4,L

CB AE RES 5,)HL)

DD CB 05 AE RES 5,)IX+d)

FD CB 05 AE RES 5,)IY+d)

CB AF RES 5,A

CB A8 RES5.B

CB A9 RES 5,C

CB AA RES 5,D

CB AB RES5.E

CB AC RES5.H

CB AD RES 5,L

CB B6 RES 6,)HL)

DD CB 05 B6 RES 6,)IX+d)

FD CB 05 B6 RES 6,)IY+d)

CB B7 RES 6,A

CB B0 RES6.B

CB B1 RES 6,C

CB B2 RES 6,D

CBB3 RES6.E

CB B4 RES 6,H

CB B5 RES 6,L

CB BE RES 7,)HL)

DD CB 05 BE RES 7,)IX+d)

FD CB 05 BE RES 7,)IY+d)

CB BF RES 7,A

CB B8 RES 7,B

6aao o'zssa

vaao a'zS3a

aaao 3'Zssa

oaao H'zssa

aaao TzS3a

60 13a

8a 013a

8d in13a

oa ON13a

00 ZN13a

Od d13a

83 3d13a

03 od13a

80 zi3a

01703 113a

Sfr03 Ni3a

siao (ih)ia

9isoaoaa (p+xi)ia

91.soaoad (p+ai)ia

Liao via

oi.ao aia

aao oia

ziao aia

£iao 3la

viao hla

siao ila

Li via

90ao (ih)oia

90soaoaa (p+xi)oia

90soaoad (p+ai)oia

zoao voia

ooao aoia

i.oao ooia

zoao aoia

eoao 3oia

1^0ao hoia

90ao ioia

ZO voia

3903 aid

3Lao (ih)aa

31soaoaa (p+xi)aa

3i9080Od (p+ai)aa

=hao vaa

si.ao aaa

6Lao oaa

vi.ao aaa

aIao 3aa

olao had

aiao "iaa

di. vaa

ZPZ

Advanced User Guide 243

CB OE RRC (HL)

DD CB 05 OE RRC (IX+d)

FD CB 05 OE RRC (lY+d)

CB OF RRC A

CB 08 RRC B

CB 09 RRCC

CB OA RRC D

CB OB RRC E

CB OC RRC H

CB OD RRC L

OF RRCA

ED 67 RRD

C7 RST OOH

CF RST 08H

D7 RST 1 0H

DF RST 18H

E7 RST 20H

EF RST 28H

F7 RST 30H

FF RST 38H

DE 20 SBC A,n

9E SBC A,(HL)

DD 9E 05 SBC A.(IX+d)

FD9E 05 SBC A,(IY+d)

9F SBC A,A

98 SBC A,B

99 SBC A,C

9A SBC A,D

9B SBC A,E

9C SBC A,H

9D SBC A,L

ED 42 SBC HL.BC

ED 52 SBC HL.DE

ED 62 SBC HL.HL

ED 72 SBC HL.SP

37 SCF

CB C6 SETO.(HL)

DD CB 05 C6 SETO,(IX+d)

FD CB 05 C6 SET 0,(IY+d)

CB C7 SET 0,A

CB CO SETO.B

CB C1 SET 0,C

CB C2 SET 0,D

CB C3 SETO.E

CB C4 SETO.H

CB C5 SET 0,L

CB CE SET 1,(HL)

DD CB 05 CE SET 1,(IX+d)

FD CB 05 CE SET1,(IY+d)

244 The Amstrad Notepad

CBCF SET1.A

CB C8 SET 1 ,B

CB C9 SET 1 ,C

CB CA SET 1 ,D

CB CB SET 1 ,E

CB CC SET 1 ,H

CB CD SET1.L

CB D6 SET 2,(HL)

DD CB 05 D6 SET2,(IX+d)

FD CB 05 D6 SET 2,(IY+d)

CB D7 SET 2,A

CB DO SET2.B

CB D1 SET 2,C

CB D2 SET2.D

CB D3 SET2.E

CB D4 SET 2,H

CB D5 SET 2,L

CB DE SET3,(HL)

DD CB 05 DE SET3,(IX+d)

FD CB 05 DE SET 3,(IY+d)

CB DF SET3.A

CB D8 SET3.B

CB D9 SET 3,C

CB DA SET3.D

CB DB SET3.E

CB DC SET3.H

CB DD SET3.L

CB E6 SET4,(HL)

DD CB 05 E6 SET4,(IX+d)

FD CB 05 E6 SET 4,(IY+d)

CB E7 SET 4,A

CB EO SET 4,B

CB E1 SET 4,C

CB E2 SET4.D

CB E3 SET4.E

CB E4 SET4.H

CB E5 SET4.L

CB EE SET5,(HL)

DD CB 05 EE SET5,(IX+d)

FD CB 05 EE SET 5,(IY+d)

CB EF SET 5,A

CB E8 SET5.B

CB E9 SET 5,C

CB EA SET5.D

CB EB SET5.E

CB EC SET5.H

CB ED SET5.L

CB F6 SET 6,(HL)

DD CB 05 F6 SET6,(IX+d)

FD CB 05 F6 SET 6,(IY+d)

Advanced User Guide 245

CB F7 SET 6,A

CB FO SET 6,B

CB F1 SET 6,C

CB F2 SET6.D

CB F3 SET 6,E

CB F4 SET 6,H

CB F5 SET 6,L

CB FE SET7,(HL)

DD CB 05 FE SET 7,(IX+d)

FD CB 05 FE SET 7,(IY+d)

CB FF SET 7,A

CB F8 SET 7,B

CB F9 SET 7,C

CB FA SET 7,D

CB FB SET 7,E

CB FC SET 7,H

CB FD SET 7,L

CB 26 SLA (HL)

DD CB 05 26 SLA (IX+d)

FD CB 05 26 SLA (lY+d)

CB 27 SLA A

CB 20 SLAB

CB 21 SLAC

CB 22 SLAD

CB 23 SLA E

CB 24 SLAH

CB 25 SLAL

CB 2E SRA (HL)

DD CB 05 2E SRA (IX+d)

FD CB 05 2E SRA (lY+d)

CB 2F SRA A

CB 28 SRA B

CB 29 SRAC

CB 2A SRAD

CB 2B SRA E

CB 2C SRAH

CB2D SRAL

CB 3E SRL (HL)

DD CB 05 3E SRL (IX+d)

FD CB 05 3E SRL (lY+d)

CB3F SRL A

CB 38 SRL B

CB 39 SRLC

CB 3A SRL D

CB 3B SRL E

CB 3C SRLH

CB3D SRLL

96 SUB (HL)

DD 96 05 SUB (IX+d)

246 The Amstrad Notepad

FD 96 05 SUB (lY+d)

97 SUB A

90 SUB B

91 SUB C

92 SUB D

93 SUB E

94 SUB H

95 SUBL

D6 20 SUB n

AE XOR (HL)

DD AE 05 XOR (IX+d)

FD AE 05 XOR (lY+d)

AF XOR A

A8 XOR B

A9 XOR C

AA XOR D

AB XOR E

AC XOR H

AD XOR L

EE 20 XOR n

NEW NOTEPAD MODELS

As this book was going to press it was revealed that a new model called the NCI50 is

retailing in France and Italy and should be available soon in Britain. It has 512K

ROM and 128K RAM (rather than the 256K ROM and 64K RAM of the NC100).

The extra ROM contains a powerful spreadsheet and an arcade/action game similar in

play to a popular game in which you have to fit falling shapes of different sizes into

the smallest possible space. It is intended that the NCI50 will eventually replace the

NCI00 as the entry-level model.

In addition, an NC200 should be launched by the time you read this. This machine

will be further enhanced to include not only the additional features of the NCI50 but

also a PC-compatible 3.5in floppy disk drive and an increase in screen size from 8 to

16 lines by 80 characters - along with a back light to make it easier to read the

display.

The back light can be toggled on and off but files cannot be written to or read directly

from the floppy disk. Rather, the external drive has been designed as a backup

mechanism for storing files or transferring them to a PC.

To do this, an extra option has been added to the menu displayed when you press

[Functionl[L] to list files. This allows you to tag files using [Space] and then transfer

them in bulk to and from a floppy disk. However, the floppy disk transfer functions

are not available when the file selector is called from BBC Basic.

The main difference that programmers will have to cater to is direct screen addressing

and Basic programs that only use eight lines (or 64 pixels depth). With regard to the

memory map, when paging in the display ram, just remember that the bottom eight

screen lines are effectively the same as the standard eight lines on the NC100.

To address the top eight lines you would start reading and writing to address &E000,

as the screen now takes up addresses &E000-&FFFF when the 16K RAM display

memory block is mapped in at &C000. Will we see addresses &C000-&DFFF used

for future increases in screen resolution? Let's hope so. Particularly seeing as the

NC200 folds open like a laptop and there should now be room for the larger screen

area.

EXTRAS

GET CONNECTED WITH LAPCAT

In order for you to transfer and backup programs between your Notepad and a

desktop computer, the Lapcat communications software and lead is now available for

the following computers:

□ IBM and PC Compatibles

□ Commodore Amiga

□ Atari ST and TT

□ Amstrad PCW

□ A version for the Archimedes is planned

The price is £40 (valid throughout Europe)

EXPAND YOUR NOTEPAD WITH A RAM CARD

Now you can increase the storage area available on your Notepad by up to a

megabyte with a RAM card. These are available in 64K, 128K, 256K, 512K, or 1Mb

sizes. Please call for the current prices.

SAVE THE WEAR AND TEAR ON YOUR FINGERS -

ORDER THE DISK OF THE BOOK

If you would like a copy of all the programs featured in this book, they are available

for a range of computers on floppy disk for just £10. But remember you will need to

have a copy of the Lapcat software and lead in order to transfer them to your

Notepad.

Advanced User Guide 249

ORDER FORM (may be photocopied)

Please send me:

[] The Lapcat software and lead, (£40.00)

[] The program disk of this book, (£10.00)

For the following format:

[] IBM and Compatible

[] Commodore Amiga

[] Atari ST and TT

[] Amstrad PCW

Disk Size: [] 3.5" [] 5.25"

[] I enclose a Cheque/PO for £ .

[] Please charge my Access/Visa card

Credit card number:

Expiry date:
/

Name: Signature:

Address:

Post Code: Telephone:

Send to: Notepad Offer, Amor Ltd., 611 Lincoln Road, Peterborough, Cambs,

PE1 3HA. Tel: 0733 68909 (24 hours). Fax: 0733 67299.

Index

A

A%, 126

abstract nouns, 75

additive, food, 47

address book, 179

ASCII, 23, 123

assembler, 186

assembly,

language, 100

Offset, 125

AUTO, 3, 185

B

B%, 126

bank switch, 152

Basic, BBC, 1, 185

battery, memory, 155

baud, 229

rate, 154

BBC Basic, 1, 185

BIOMON.BAS, 6

biorhythm, 6

book, companion disk to, 248

c

C%, 126

CALC.BAS, 12

calculator, 12

loan, 58

CALL, 126

card, 229

memory, 154, 155

RAM, 248

channels, sound, 154

CHART.BAS, 22

checker, style, 75

clear, 15

clock,

functions, 169

real time, 156

world, 88

code,

ASCE, 23

decimal, 23

scan, 230

COL1, 160, 226

COL1TEXT, 161, 226

compiler, Turbo C, 134

conversion scales, 68

COOKIE.BAS, 26

D

D%, 126

decimal, 23

DEF, 126

DEFB, 126

DEFM, 126

DEFW, 126

DEVIL.BAS, 33

diary, 179

disassembler, 101

, Z80, 100

disk, of the book, 248

display, 229

LCD, 146

page, 130

drawing, line, 130

DU, 132

dumps, screen, 134

Advanced User Guide 251

E

E%, 126

EDIT, 128

EDITBUF, 158, 226

emulator, INKEY, 56

ENDPROC, 128

EQUB, 126

EQUS, 126

EQUW, 126

*EXEC, 122

external programs, 1 45

F

F%, 126

FCLOSE, 172, 226

FDATESTAMP, 178, 226

FERASE, 173, 226

FGETATTR, 178, 226

files,

I/O, 172

selector, 101, 131

transfer, 129

system, 179

FINBLOCK, 173, 226

FINCHAR, 173, 226

FINDFIRST, 173, 226

FINDNEXT, 174, 226

Flesch-Kincaid, 75

Fog, 75

Food Additive, 47

FOOD.BAS, 47

Food for Thought, 48

FOPENIN, 174, 226

FOPENOUT, 174, 226

FOPENUP, 175, 226

fortune cookie, 26

FOUTBLOCK, 175, 226

FOUTCHAR, 175, 226

FRENAME, 176, 226

FSEEK, 176, 226

FSETATTR, 179, 226

FSIZE, 176, 225, 226

FSIZEHANDLE, 177, 226

FTELL, 177, 226

FTESTEOF, 177, 226

functions, clock, 169

H

H%, 126

HEAPADDRESS, 170, 226

HEAPALLOC, 171, 227

HEAPFREE, 171, 227

HEAPLOCK, 171, 227

HEAPMAXFREE, 172, 227

HEAPREALLOC, 172, 227

hexadecimal, 22

hidden verbs, 75

HIMEM, 185

I/O, file, 172

INKEY.BAS, 56

INKEY emulator, 56

input, 151

input/output, 151

file, 172

instruction,

codes, Z80, 232

set,Z80, 188

interface, parallel, 154

interrupt, 155

IRQ, 229

status, 155

jumpblock, 157

K

key, 229

keyboard, 156, 158

scan codes, 230

KMCHARRETURN, 158, 227

KMGETYELLOW, 180, 227

KMREADKBD, 158, 227

KMSETEXPAND, 159, 227

KMSETTICKCOUNT, 159, 227

KMSETYELLOW, 180, 227

KMWATTKBD, 159, 227

L

L%, 126

language, assembly, 100

LAPCAT, 187, 248

LAPCAT-RECEIVE, 180

LAPCAT_RECEIVE, 227

LAPCAT.SEND, 181, 227

LCD display, 146

line drawing, 130

list, 123

Loan calculator, 58

lock-outs, 186

LOMEM, 185

M

MACRO, 129

management, memory, 152

252 The Amstrad Notepad

map, memory, 151

MCPRINTCHAR, 166, 227

MCREADYPRINTER, 166, 227

MCSETPRINTER, 166, 227

memory, 229

card, 154

card/battery, 155

functions, 170

management, 152

map, 151

MM, 132

mortgage, 59

MORTGAGE.BAS, 58

N

NCI50, 247

NC200, 247

Notepad, new models, 247

nouns, abstract, 75

o

Offset Assembly, 125, 145

ON ERROR, 185

OPT, 123

output, 151

P

PADGETTICKER, 169, 227

PADGETTIME, 169, 227

PADGETVERSION, 181, 227

PADINITSERIAL, 167, 227

PADINSERIAL, 167, 227

PADOUTPARALLEL, 167, 227

PADOUTSERIAL, 167, 227

PADREADYPARALLEL, 168, 227

PADREADYSERIAL, 168, 227

PADRESETSERIAL, 168, 227

PADSERIALWATTTNG, 169, 227

PADSETALARM, 170, 227

PADSETTIME, 170, 227

PAGE, 185

page display, 130

parallel interface, 154

parallel port, 229

functions, 166

passive verbs, 79

PCMCIA, 145, 146

PCX, 134

port,

parallel, 166, 229

serial, 166

POST (Power On Self-Test), 133

power, 155, 229

print, 22

programs, external, 145

R

RAM, 100

card, 187, 248

rate, baud, 154

READBUF, 160, 227

READYREC.BAS, 61

real time clock, 156

reconciler, statement, 61

ROMs, 100

RTC, 229

rules, three golden, 2

run, 6

s

save, 122

SCALES.BAS, 68

scales, conversion, 68

screen, 134, 160

dumps, 134

SELECTFILE, 177, 227

selector, file, 131

self-test, 133

sentences, complex, 75

serial port functions, 1 66

SETDTA, 178, 227

sound channels, 154

speaker, 229

*SPOOL, 122

statement reconciler, 61

status, irq, 155

STYLE.BAS, 75

style checker, 75

system,

files, 179

variables, 182, 185

T

TASM, 146

TESTESCAPE, 160, 227

TEXTOUT, 161, 227

TEXTOUTCOUNT, 161, 227

TIFF, 134

TIMEZONE.BAS, 88

TOP, 185

Towers of Hanoi, 33

TRACE, 185

transfer, file, 129

Turbo C compiler, 134

TXTBOLDOFF, 164, 228

TXTBOLDON, 164, 228

Advanced User Guide 253

TXTCLEAR'VINDOW, 161, 228

TXTCUROFF, 162, 228

TXTCURON, 162, 228

TXTGETCURSOR, 162, 228

TXTGETWINDOW, 162, 228

TXTINVERSEOFF, 165, 228

TXTINVERSEON, 165, 228

TXTOUTPUT, 163, 228

TXTSETCURSOR, 163, 228

TXTSETWINDOW, 163, 228

TXTUNDERLINEOFF, 165, 228

TXTUNDERLINEON, 165, 228

TXTWRCHAR, 164, 228

U

UART, 156, 229

USR, 126

V

variables, system, 182, 185

vdu, 22

verbs,

hidden, 75

passive, 75

w

world clock, 88

X

X%, 126

Y

Y%, 126

z

Z80,

disassembler, 100

instruction codes, 232

instruction set, 188

ZAP.BAS, 100

Words for the wise - from

Sigma Press

Sigma publish what is probably the widest range of computer books from any independent UK

publisher. And that's not just for the PC, but for many other popular micros - Atari, Amiga and

Archimedes - and for software packages that are widely-used in the UK and Europe, including

Timeworks, Deskpress, Sage, Money Manager and many more. We also publish a whole

range of professional-level books for topics as far apart as IBM mainframes, UNIX, computer

translation, manufacturing technology and networking.

A complete catalogue is available, but here are some of the highlights:

Amstrad PCW

The Complete Guide to LocoScript and Amstrad PCW Computers - Hughes - £12.95

LocoScripting People - Clayton and Clayton - £12.95

The PCW LOGO Manual - Robert Grant - £12.95

Picture Processing on the Amstrad PCW - Gilmore - £12.95

See also Programming section for Mini Office

Archimedes

A Beginner's Guide to WIMP Programming - Fox - £12.95

See also: Desktop Publishing on the Archimedes and Archimedes Game Maker's Manual

Artificial Intelligence

Build Your Own Expert System - Naylor - £1 1.95

Computational Linguistics - McEnery - £14.95

Introducing Neural Networks - Carling - £14.95

Beginners' Guides

Computing under Protest! - Croucher - £12.95

Alone with a PC - Bradley - £12.95

The New User's Mac Book - Wilson - £12.95

PC Computing for Absolute Beginners - Edwards - £12.95

DTP and Graphics

Designworks Companion - Whale - £14.95

Ventura to Quark XPress for the PC - Wilmore - £19.95

Timeworks Publisher Companion - Morrissey - £12.95

Timeworks for Windows Companion - Sinclair - £14.95

PagePlus Publisher Companion - Sinclair - £12.95

Express Publisher DTP Companion - Sinclair - £14.95

Amiga Real-Time 3D Graphics - Tyler - £14.95

Atari Real-Time 3D Graphics - Tyler - £12.95

European and US Software Packages

Mastering Money Manager PC - Sinclair - £12.95

Using Sage Sterling in Business - Woodford - £12.95

Mastering Masterfile PC - Sinclair - £12.95

All-in-One Business Computing (Mini Office Professional) - Hughes - £12.95

Game Making and Playing

PC Games Bible - Matthews and Rigby - £12.95

Archimedes Game Maker's Manual - Blunt - £14.95

Atari Game Maker's Manual - Hill - £14.95

Amiga Game Maker's Manual - Hill - £16.95

Adventure Gamer's Manual - Redrup - £12.95

Genera!

Music and New Technology - Georghiades and Jacobs - £12.95

Getting the Best from your Amstrad Notepad - Wilson - £12.95

Computers and Chaos (Atari and Amiga editions) - Bessant - £12.95

Computers in Genealogy - Isaac - £1 2.95

Multimedia, CD-ROM and Compact Disc - Botto - £14.95

Advanced Manufacturing Technology - Zairi - £14.95

Networks

$25 Network User Guide - Sinclair - £12.95

Integrated Digital Networks - Lawton - £24.95

Novell Netware Companion - Croucher - £16.95

PC Operating Systems and Architecture

Working with Windows 3.1 - Sinclair - £16.95

Servicing and Supporting IBM PCs and Compatibles - Moss - £16.95

The DR DOS Book - Croucher - £16.95

MS-DOS Revealed - Last - £12.95

PC Architecture and Assembly Language - Kauler - £16.95

Programmer's Technical Reference - Williams - £19.95

MS-DOS File and Program Control - Sinclair - £12.95

Mastering DesqView - Sinclair - £1 2.95

Programming

C Applications Library - Pugh - £16.95

Starting MS-DOS Assembler - Sinclair - £12.95

Understanding Occam and the transputer - Ellison - £12.95

Programming in ANSI Standard C - Horsinqton - £14.95

Programming in Microsoft Visual Basic - Penfold - £16.95

For LOGO, see Amstrad PCW

UNIX and mainframes

UNIX - The Book - Banahan and Rutter - £1 1 .95

UNIX - The Complete Guide - Manger - £19.95

RPG on the IBM AS/400 - Tomlinson - £24.95

HOW TO ORDER

Prices correct for 1993.

Order these books from your usual bookshop, or direct from:

SIGMA PRESS,

1 SOUTH OAK LANE,

WILMSLOW, CHESHIRE, SK9 6AR

PHONE: 0625 - 531035; FAX: 0625 - 536800

PLEASE ADD £1 TOWARDS POST AND PACKING FOR ONE BOOK.

POSTAGE IS FREE FOR TWO OR MORE BOOKS.

OVERSEAS ORDERS: please pay by credit card; we will add airmail postage at actual cost

CHEQUES SHOULD BE MADE PAYABLE TO SIGMA PRESS.

ACCESS AND VISA WELCOME - 24 HOUR ANSWERPHONE SERVICE.

The "Advanced User Guide" takes over from where the manual left off. It tells you

absolutely everything there is to know about the inner workings of the Amstrad

Notepad range, including:

* professional hints, tips and "undocumented" commands

* grabbing Notepad screens and displaying them on a PC

* writing programs on a PC and running them on a Notepad

All this, plus complete lists of Z80 assembler instructions and dozens of program

listings, ready to type in. And if that isn't enough, there's a disk offer inside this

book to save time and effort.

This is Robin Nixon's second book for Sigma Press, and Sigma's second book for

the Notepad. For even more hints, tips and programs - be sure to buy "How to

Program the Amstrad NCI00 Notepad", by Patrick Hall, also published by Sigma.

We publish a wide range of books on all aspects of

computing. Please write or phone for a complete

catalogue:

Sigma Press,

1 South Oak Lane,

Wilmslow,

Cheshire SK9 6AR

Phone: 0625 - 531035

We welcome new authors.

© SIGMA

	Z80 Disassembler
	Undocumented fatures

	Transferring BASIC programs

	Funciones del Sistema CALL

