[Back to SORTING SWAG index] [Back to Main SWAG index] [Original]
UNIT Sort;
{ These sort routines are for arrays of Integers. Count is the maximum }
{ number of items in the array. }
{****************************************************************************}
INTERFACE
{****************************************************************************}
FUNCTION BinarySearch (VAR A; X : Integer; Count : Integer) : Integer;
PROCEDURE BubbleSort (VAR A; Count : Integer); {slow}
PROCEDURE CombSort (VAR A; Count : Integer);
PROCEDURE QuickSort (VAR A; Count : Integer); {fast}
FUNCTION SequentialSearch (VAR A; X : Integer; Count : Integer) : Integer;
PROCEDURE ShellSort (VAR A; Count : Integer); {moderate}
{****************************************************************************}
IMPLEMENTATION
{****************************************************************************}
TYPE
SortArray = ARRAY[0..0] OF Integer;
{****************************************************************************}
{ }
{ Local Procedures and Functions }
{ }
{****************************************************************************}
PROCEDURE Swap (VAR A, B : Integer);
VAR C : Integer;
BEGIN
C := A;
A := B;
B := C;
END;
{****************************************************************************}
{ }
{ Global Procedures and Functions }
{ }
{****************************************************************************}
FUNCTION BinarySearch (VAR A; X : Integer; Count : Integer) : Integer;
VAR High, Low, Mid : Integer;
BEGIN
Low := 1;
High := Count;
WHILE High >= Low DO
BEGIN
Mid := Trunc(High + Low) DIV 2;
IF X > SortArray(A)[mid]
THEN Low := Mid + 1
ELSE IF X < SortArray(A)[Mid]
THEN High := Mid - 1
ELSE High := -1;
END;
IF High = -1
THEN BinarySearch := Mid
ELSE BinarySearch := 0;
END;
{****************************************************************************}
PROCEDURE BubbleSort (VAR A; Count : Integer);
VAR i, j : Integer;
BEGIN
FOR i := 2 TO Count DO
FOR j := Count DOWNTO i DO
IF SortArray(A)[j-1] > SortArray(A)[j]
THEN Swap(SortArray(A)[j],SortArray(A)[j-1]);
END;
{****************************************************************************}
PROCEDURE CombSort (VAR A; Count : Integer);
{ The combsort is an optimised version of the bubble sort. It uses a }
{ decreasing gap in order to compare values of more than one element }
{ apart. By decreasing the gap the array is gradually "combed" into }
{ order ... like combing your hair. First you get rid of the large }
{ tangles, then the smaller ones ... }
{ There are a few particular things about the combsort. }
{ Firstly, the optimal shrink factor is 1.3 (worked out through a }
{ process of exhaustion by the guys at BYTE magazine). Secondly, by }
{ never having a gap of 9 or 10, but always using 11, the sort is }
{ faster. }
{ This sort approximates an n log n sort - it's faster than any other }
{ sort I've seen except the quicksort (and it beats that too sometimes). }
{ The combsort does not slow down under *any* circumstances. In fact, on }
{ partially sorted lists (including *reverse* sorted lists) it speeds up.}
CONST ShrinkFactor = 1.3; { Optimal shrink factor ... }
VAR
Gap, i, Temp : Integer;
Finished : Boolean;
BEGIN
Gap := Trunc(ShrinkFactor);
REPEAT
Finished := TRUE;
Gap := Trunc(Gap/ShrinkFactor);
IF Gap < 1
THEN { Gap must *never* be less than 1 } Gap := 1
ELSE IF Gap IN [9,10]
THEN { Optimises the sort ... } Gap := 11;
FOR i := 1 TO (Count - Gap) DO
IF SortArray(A)[i] < SortArray(A)[i+gap]
THEN BEGIN
Swap(SortArray(A)[i],SortArray(A)[i + Gap]);
Finished := FALSE;
END;
UNTIL (Gap = 1) AND Finished;
END;
{****************************************************************************}
PROCEDURE QuickSort (VAR A; Count : Integer);
{**************************************************************************}
PROCEDURE PartialSort(LowerBoundary, UpperBoundary : Integer; VAR A);
VAR ii, l1, r1, i, j, k : Integer;
BEGIN
k := (SortArray(A)[LowerBoundary] + SortArray(A)[UpperBoundary]) DIV 2;
i := LowerBoundary;
j := UpperBoundary;
REPEAT
WHILE SortArray(A)[i] < k DO Inc(i);
WHILE k < SortArray(A)[j] DO Dec(j);
IF i <= j
THEN BEGIN
Swap(SortArray(A)[i],SortArray(A)[j]);
Inc(i);
Dec(j);
END;
UNTIL i > j;
IF LowerBoundary < j
THEN PartialSort(LowerBoundary,j,A);
IF i < UpperBoundary
THEN PartialSort(UpperBoundary,i,A);
END;
{*************************************************************************}
BEGIN
PartialSort(1,Count,A);
END;
{****************************************************************************}
FUNCTION SequentialSearch (VAR A; X : Integer; Count : Integer) : Integer;
VAR i : Integer;
BEGIN
FOR i := 1 TO Count DO
IF X = Sortarray(A)[i]
THEN BEGIN
SequentialSearch := i;
Exit;
END;
SequentialSearch := 0;
END;
{****************************************************************************}
PROCEDURE ShellSort (VAR A; Count : Integer);
VAR Gap, i, j, k : Integer;
BEGIN
Gap := Count DIV 2;
WHILE (gap > 0) DO
BEGIN
FOR i := (Gap + 1) TO Count DO
BEGIN
j := i - Gap;
WHILE (j > 0) DO
BEGIN
k := j + gap;
IF (SortArray(A)[j] <= SortArray(A)[k])
THEN j := 0
ELSE Swap(SortArray(A)[j],SortArray(A)[k]);
j := j - Gap;
END;
END;
Gap := Gap DIV 2;
END;
END;
{*****************************************************************************}
END.
[Back to SORTING SWAG index] [Back to Main SWAG index] [Original]